File: TreeClassification.cpp

package info (click to toggle)
r-cran-ranger 0.18.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,160 kB
  • sloc: cpp: 8,350; sh: 13; makefile: 5; ansic: 2
file content (1322 lines) | stat: -rw-r--r-- 46,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
/*-------------------------------------------------------------------------------
 This file is part of ranger.

 Copyright (c) [2014-2018] [Marvin N. Wright]

 This software may be modified and distributed under the terms of the MIT license.

 Please note that the C++ core of ranger is distributed under MIT license and the
 R package "ranger" under GPL3 license.
 #-------------------------------------------------------------------------------*/

#include <unordered_map>
#include <random>
#include <algorithm>
#include <iostream>
#include <iterator>

#include "TreeClassification.h"
#include "utility.h"
#include "Data.h"

namespace ranger {

TreeClassification::TreeClassification(std::vector<double>* class_values, std::vector<uint>* response_classIDs,
    std::vector<std::vector<size_t>>* sampleIDs_per_class, std::vector<double>* class_weights) :
    class_values(class_values), response_classIDs(response_classIDs), sampleIDs_per_class(sampleIDs_per_class), class_weights(
        class_weights), counter(0), counter_per_class(0) {
}

TreeClassification::TreeClassification(std::vector<std::vector<size_t>>& child_nodeIDs,
    std::vector<size_t>& split_varIDs, std::vector<double>& split_values, std::vector<double>* class_values,
    std::vector<uint>* response_classIDs) :
    Tree(child_nodeIDs, split_varIDs, split_values), class_values(class_values), response_classIDs(response_classIDs), sampleIDs_per_class(
        0), class_weights(0), counter { }, counter_per_class { } {
}

void TreeClassification::allocateMemory() {
  // Init counters if not in memory efficient mode
  if (!memory_saving_splitting) {
    size_t num_classes = class_values->size();
    size_t max_num_splits = data->getMaxNumUniqueValues();

    // Use number of random splits for extratrees
    if (splitrule == EXTRATREES && num_random_splits > max_num_splits) {
      max_num_splits = num_random_splits;
    }

    counter.resize(max_num_splits);
    counter_per_class.resize(num_classes * max_num_splits);
  }
}

double TreeClassification::estimate(size_t nodeID) {

  // Count classes over samples in node and return class with maximum count
  std::vector<double> class_count = std::vector<double>(class_values->size(), 0.0);

  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    size_t value = (*response_classIDs)[sampleID];
    class_count[value] += (*class_weights)[value];
  }

  if (end_pos[nodeID] > start_pos[nodeID]) {
    size_t result_classID = mostFrequentClass(class_count, random_number_generator);
    return ((*class_values)[result_classID]);
  } else {
    throw std::runtime_error("Error: Empty node.");
  }

}

void TreeClassification::appendToFileInternal(std::ofstream& file) { // #nocov start
  // Empty on purpose
} // #nocov end

bool TreeClassification::splitNodeInternal(size_t nodeID, std::vector<size_t>& possible_split_varIDs) {

  size_t num_samples_node = end_pos[nodeID] - start_pos[nodeID];
  
  // Save node statistics
  if (save_node_stats) {
    num_samples_nodes[nodeID] = num_samples_node;
    node_predictions[nodeID] = estimate(nodeID);
  }
  
  // Stop if maximum node size or depth reached
  if ((min_node_size->size() == 1 && num_samples_node <= (*min_node_size)[0]) || (nodeID >= last_left_nodeID && max_depth > 0 && depth >= max_depth)) {
    split_values[nodeID] = estimate(nodeID);
    return true;
  }

  // Check if node is pure and set split_value to estimate and stop if pure
  bool pure = true;
  double pure_value = 0;
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    double value = data->get_y(sampleID, 0);
    if (pos != start_pos[nodeID] && value != pure_value) {
      pure = false;
      break;
    }
    pure_value = value;
  }
  if (pure) {
    split_values[nodeID] = pure_value;
    return true;
  }

  // Find best split, stop if no decrease of impurity
  bool stop;
  if (splitrule == EXTRATREES) {
    stop = findBestSplitExtraTrees(nodeID, possible_split_varIDs);
  } else {
    stop = findBestSplit(nodeID, possible_split_varIDs);
  }

  if (stop) {
    split_values[nodeID] = estimate(nodeID);
    return true;
  }

  return false;
}

void TreeClassification::createEmptyNodeInternal() {
  if (save_node_stats) {
    node_predictions.push_back(0);
  }
}

double TreeClassification::computePredictionAccuracyInternal(std::vector<double>* prediction_error_casewise) {

  size_t num_predictions = prediction_terminal_nodeIDs.size();
  size_t num_missclassifications = 0;
  for (size_t i = 0; i < num_predictions; ++i) {
    size_t terminal_nodeID = prediction_terminal_nodeIDs[i];
    double predicted_value = split_values[terminal_nodeID];
    double real_value = data->get_y(oob_sampleIDs[i], 0);
    if (predicted_value != real_value) {
      ++num_missclassifications;
      if (prediction_error_casewise) {
        (*prediction_error_casewise)[i] = 1;
      }
    } else {
      if (prediction_error_casewise) {
        (*prediction_error_casewise)[i] = 0;
      }
    }
  }
  return (1.0 - (double) num_missclassifications / (double) num_predictions);
}

bool TreeClassification::findBestSplit(size_t nodeID, std::vector<size_t>& possible_split_varIDs) {

  size_t num_samples_node = end_pos[nodeID] - start_pos[nodeID];
  size_t num_classes = class_values->size();
  double best_decrease = -1;
  size_t best_varID = 0;
  double best_value = 0;

  std::vector<size_t> class_counts(num_classes);
  // Compute overall class counts
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    uint sample_classID = (*response_classIDs)[sampleID];
    ++class_counts[sample_classID];
  }
  
  // Stop if class-wise minimal node size reached
  if (min_node_size->size() > 1) {
    for (size_t j = 0; j < num_classes; ++j) {
      if (class_counts[j] < (*min_node_size)[j]) {
        return true;
      }
    }
  }
  
  // Stop early if no split posssible
  if (min_bucket->size() == 1) {
    if (num_samples_node < 2 * (*min_bucket)[0]) {
      return true;
    }
  } else {
    uint sum_min_bucket = 0;
    for (size_t j = 0; j < num_classes; ++j) {
      sum_min_bucket += (*min_bucket)[j];
    }
    if (num_samples_node < sum_min_bucket) {
      return true;
    } 
  }

  // For all possible split variables
  for (auto& varID : possible_split_varIDs) {
    // Find best split value, if ordered consider all values as split values, else all 2-partitions
    if (data->isOrderedVariable(varID)) {

      // Use memory saving method if option set
      if (memory_saving_splitting) {
        findBestSplitValueSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
            best_decrease);
      } else {
        // Use faster method for both cases
        double q = (double) num_samples_node / (double) data->getNumUniqueDataValues(varID);
        if (q < Q_THRESHOLD) {
          if (data->hasNA()) {
            findBestSplitValueNanSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
                                     best_decrease);
          } else {
            findBestSplitValueSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
                                     best_decrease);
          }
          
        } else {
          if (data->hasNA()) {
            findBestSplitValueNanLargeQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
                                     best_decrease);
          } else {
            findBestSplitValueLargeQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
                                     best_decrease);
          }
        }
      }
    } else {
      findBestSplitValueUnordered(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
          best_decrease);
    }
  }

  // Stop if no good split found
  if (best_decrease < 0) {
    return true;
  }

  // Save best values
  split_varIDs[nodeID] = best_varID;
  split_values[nodeID] = best_value;
  
  // Save split statistics
  if (save_node_stats) {
    split_stats[nodeID] = best_decrease;
  }

  // Compute gini index for this node and to variable importance if needed
  if (importance_mode == IMP_GINI || importance_mode == IMP_GINI_CORRECTED) {
    addGiniImportance(nodeID, best_varID, best_decrease);
  }

  // Regularization
  saveSplitVarID(best_varID);

  return false;
}

void TreeClassification::findBestSplitValueSmallQ(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease) {

  // Create possible split values
  std::vector<double> possible_split_values;
  data->getAllValues(possible_split_values, sampleIDs, varID, start_pos[nodeID], end_pos[nodeID]);

  // Try next variable if all equal for this
  if (possible_split_values.size() < 2) {
    return;
  }

  const size_t num_splits = possible_split_values.size();
  if (memory_saving_splitting) {
    std::vector<size_t> class_counts_right(num_splits * num_classes), n_right(num_splits);
    findBestSplitValueSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
        best_decrease, possible_split_values, class_counts_right, n_right);
  } else {
    std::fill_n(counter_per_class.begin(), num_splits * num_classes, 0);
    std::fill_n(counter.begin(), num_splits, 0);
    findBestSplitValueSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
        best_decrease, possible_split_values, counter_per_class, counter);
  }
}

void TreeClassification::findBestSplitValueSmallQ(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease, const std::vector<double>& possible_split_values, std::vector<size_t>& counter_per_class,
    std::vector<size_t>& counter) {
  
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    uint sample_classID = (*response_classIDs)[sampleID];
    size_t idx = std::lower_bound(possible_split_values.begin(), possible_split_values.end(),
        data->get_x(sampleID, varID)) - possible_split_values.begin();

    ++counter_per_class[idx * num_classes + sample_classID];
    ++counter[idx];
  }

  size_t n_left = 0;
  std::vector<size_t> class_counts_left(num_classes);

  // Compute decrease of impurity for each split
  for (size_t i = 0; i < possible_split_values.size() - 1; ++i) {

    // Stop if nothing here
    if (counter[i] == 0) {
      continue;
    }

    n_left += counter[i];

    // Stop if right child empty
    size_t n_right = num_samples_node - n_left;
    if (n_right == 0) {
      break;
    }

    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right < (*min_bucket)[0])) {
      continue;
    }

    double decrease;
    if (splitrule == HELLINGER) {
      for (size_t j = 0; j < num_classes; ++j) {
        class_counts_left[j] += counter_per_class[i * num_classes + j];
      }

      // TPR is number of outcome 1s in one node / total number of 1s
      // FPR is number of outcome 0s in one node / total number of 0s
      double tpr = (double) (class_counts[1] - class_counts_left[1]) / (double) class_counts[1];
      double fpr = (double) (class_counts[0] - class_counts_left[0]) / (double) class_counts[0];

      // Decrease of impurity
      double a1 = sqrt(tpr) - sqrt(fpr);
      double a2 = sqrt(1 - tpr) - sqrt(1 - fpr);
      decrease = sqrt(a1 * a1 + a2 * a2);
    } else {
      // Sum of squares
      double sum_left = 0;
      double sum_right = 0;
      for (size_t j = 0; j < num_classes; ++j) {
        class_counts_left[j] += counter_per_class[i * num_classes + j];
        size_t class_count_right = class_counts[j] - class_counts_left[j];

        sum_left += (*class_weights)[j] * class_counts_left[j] * class_counts_left[j];
        sum_right += (*class_weights)[j] * class_count_right * class_count_right;
      }

      // Decrease of impurity
      decrease = sum_right / (double) n_right + sum_left / (double) n_left;
    }
    
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_right = class_counts[j] - class_counts_left[j];
        if (class_counts_left[j] < (*min_bucket)[j] || class_count_right < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }

    // Regularization
    regularize(decrease, varID);

    // If better than before, use this
    if (decrease > best_decrease) {
      // Use mid-point split
      best_value = (possible_split_values[i] + possible_split_values[i + 1]) / 2;
      best_varID = varID;
      best_decrease = decrease;

      // Use smaller value if average is numerically the same as the larger value
      if (best_value == possible_split_values[i + 1]) {
        best_value = possible_split_values[i];
      }
    }
  }
}

void TreeClassification::findBestSplitValueLargeQ(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease) {

  // Set counters to 0
  size_t num_unique = data->getNumUniqueDataValues(varID);
  std::fill_n(counter_per_class.begin(), num_unique * num_classes, 0);
  std::fill_n(counter.begin(), num_unique, 0);

  // Count values
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    size_t index = data->getIndex(sampleID, varID);
    size_t classID = (*response_classIDs)[sampleID];

    ++counter[index];
    ++counter_per_class[index * num_classes + classID];
  }

  size_t n_left = 0;
  std::vector<size_t> class_counts_left(num_classes);

  // Compute decrease of impurity for each split
  for (size_t i = 0; i < num_unique - 1; ++i) {

    // Stop if nothing here
    if (counter[i] == 0) {
      continue;
    }

    n_left += counter[i];

    // Stop if right child empty
    size_t n_right = num_samples_node - n_left;
    if (n_right == 0) {
      break;
    }

    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right < (*min_bucket)[0])) {
      continue;
    }

    double decrease;
    if (splitrule == HELLINGER) {
      for (size_t j = 0; j < num_classes; ++j) {
        class_counts_left[j] += counter_per_class[i * num_classes + j];
      }

      // TPR is number of outcome 1s in one node / total number of 1s
      // FPR is number of outcome 0s in one node / total number of 0s
      double tpr = (double) (class_counts[1] - class_counts_left[1]) / (double) class_counts[1];
      double fpr = (double) (class_counts[0] - class_counts_left[0]) / (double) class_counts[0];

      // Decrease of impurity
      double a1 = sqrt(tpr) - sqrt(fpr);
      double a2 = sqrt(1 - tpr) - sqrt(1 - fpr);
      decrease = sqrt(a1 * a1 + a2 * a2);
    } else {
      // Sum of squares
      double sum_left = 0;
      double sum_right = 0;
      for (size_t j = 0; j < num_classes; ++j) {
        class_counts_left[j] += counter_per_class[i * num_classes + j];
        size_t class_count_right = class_counts[j] - class_counts_left[j];

        sum_left += (*class_weights)[j] * class_counts_left[j] * class_counts_left[j];
        sum_right += (*class_weights)[j] * class_count_right * class_count_right;
      }

      // Decrease of impurity
      decrease = sum_right / (double) n_right + sum_left / (double) n_left;
    }
    
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_right = class_counts[j] - class_counts_left[j];
        if (class_counts_left[j] < (*min_bucket)[j] || class_count_right < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }

    // Regularization
    regularize(decrease, varID);

    // If better than before, use this
    if (decrease > best_decrease) {
      // Find next value in this node
      size_t j = i + 1;
      while (j < num_unique && counter[j] == 0) {
        ++j;
      }

      // Use mid-point split
      best_value = (data->getUniqueDataValue(varID, i) + data->getUniqueDataValue(varID, j)) / 2;
      best_varID = varID;
      best_decrease = decrease;

      // Use smaller value if average is numerically the same as the larger value
      if (best_value == data->getUniqueDataValue(varID, j)) {
        best_value = data->getUniqueDataValue(varID, i);
      }
    }
  }
}

void TreeClassification::findBestSplitValueUnordered(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease) {

  // Create possible split values
  std::vector<double> factor_levels;
  data->getAllValues(factor_levels, sampleIDs, varID, start_pos[nodeID], end_pos[nodeID]);

  // Try next variable if all equal for this
  if (factor_levels.size() < 2) {
    return;
  }

  // Number of possible splits is 2^num_levels
  size_t num_splits = (1ULL << factor_levels.size());

  // Compute decrease of impurity for each possible split
  // Split where all left (0) or all right (1) are excluded
  // The second half of numbers is just left/right switched the first half -> Exclude second half
  for (size_t local_splitID = 1; local_splitID < num_splits / 2; ++local_splitID) {

    // Compute overall splitID by shifting local factorIDs to global positions
    size_t splitID = 0;
    for (size_t j = 0; j < factor_levels.size(); ++j) {
      if ((local_splitID & (1ULL << j))) {
        double level = factor_levels[j];
        size_t factorID = floor(level) - 1;
        splitID = splitID | (1ULL << factorID);
      }
    }

    // Initialize
    std::vector<size_t> class_counts_right(num_classes);
    size_t n_right = 0;

    // Count classes in left and right child
    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      uint sample_classID = (*response_classIDs)[sampleID];
      double value = data->get_x(sampleID, varID);
      size_t factorID = floor(value) - 1;

      // If in right child, count
      // In right child, if bitwise splitID at position factorID is 1
      if ((splitID & (1ULL << factorID))) {
        ++n_right;
        ++class_counts_right[sample_classID];
      }
    }
    size_t n_left = num_samples_node - n_right;

    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right < (*min_bucket)[0])) {
      continue;
    }

    double decrease;
    if (splitrule == HELLINGER) {
      // TPR is number of outcome 1s in one node / total number of 1s
      // FPR is number of outcome 0s in one node / total number of 0s
      double tpr = (double) class_counts_right[1] / (double) class_counts[1];
      double fpr = (double) class_counts_right[0] / (double) class_counts[0];

      // Decrease of impurity
      double a1 = sqrt(tpr) - sqrt(fpr);
      double a2 = sqrt(1 - tpr) - sqrt(1 - fpr);
      decrease = sqrt(a1 * a1 + a2 * a2);
    } else {
      // Sum of squares
      double sum_left = 0;
      double sum_right = 0;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_right = class_counts_right[j];
        size_t class_count_left = class_counts[j] - class_count_right;

        sum_right += (*class_weights)[j] * class_count_right * class_count_right;
        sum_left += (*class_weights)[j] * class_count_left * class_count_left;
      }

      // Decrease of impurity
      decrease = sum_left / (double) n_left + sum_right / (double) n_right;
    }
    
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_left = class_counts[j] - class_counts_right[j];
        if (class_count_left < (*min_bucket)[j] || class_counts_right[j] < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }

    // Regularization
    regularize(decrease, varID);

    // If better than before, use this
    if (decrease > best_decrease) {
      best_value = splitID;
      best_varID = varID;
      best_decrease = decrease;
    }
  }
}

bool TreeClassification::findBestSplitExtraTrees(size_t nodeID, std::vector<size_t>& possible_split_varIDs) {

  size_t num_samples_node = end_pos[nodeID] - start_pos[nodeID];
  size_t num_classes = class_values->size();
  double best_decrease = -1;
  size_t best_varID = 0;
  double best_value = 0;

  std::vector<size_t> class_counts(num_classes);
  // Compute overall class counts
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    uint sample_classID = (*response_classIDs)[sampleID];
    ++class_counts[sample_classID];
  }
  
  // Stop if class-wise minimal node size reached
  if (min_node_size->size() > 1) {
    for (size_t j = 0; j < num_classes; ++j) {
      if (class_counts[j] < (*min_node_size)[j]) {
        return true;
      }
    }
  }

  // Stop early if no split posssible
  if (min_bucket->size() == 1) {
    if (num_samples_node < 2 * (*min_bucket)[0]) {
      return true;
    }
  } else {
    uint sum_min_bucket = 0;
    for (size_t j = 0; j < num_classes; ++j) {
      sum_min_bucket += (*min_bucket)[j];
    }
    if (num_samples_node < sum_min_bucket) {
      return true;
    } 
  }

  // For all possible split variables
  for (auto& varID : possible_split_varIDs) {
    // Find best split value, if ordered consider all values as split values, else all 2-partitions
    if (data->isOrderedVariable(varID)) {
      findBestSplitValueExtraTrees(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
          best_decrease);
    } else {
      findBestSplitValueExtraTreesUnordered(nodeID, varID, num_classes, class_counts, num_samples_node, best_value,
          best_varID, best_decrease);
    }
  }

  // Stop if no good split found
  if (best_decrease < 0) {
    return true;
  }

  // Save best values
  split_varIDs[nodeID] = best_varID;
  split_values[nodeID] = best_value;
  
  // Save split statistics
  if (save_node_stats) {
    split_stats[nodeID] = best_decrease;
  }

  // Compute gini index for this node and to variable importance if needed
  if (importance_mode == IMP_GINI || importance_mode == IMP_GINI_CORRECTED) {
    addGiniImportance(nodeID, best_varID, best_decrease);
  }

  // Regularization
  saveSplitVarID(best_varID);

  return false;
}

void TreeClassification::findBestSplitValueExtraTrees(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease) {

  // Get min/max values of covariate in node
  double min;
  double max;
  data->getMinMaxValues(min, max, sampleIDs, varID, start_pos[nodeID], end_pos[nodeID]);

  // Try next variable if all equal for this
  if (min == max) {
    return;
  }

  // Create possible split values: Draw randomly between min and max
  std::vector<double> possible_split_values;
  std::uniform_real_distribution<double> udist(min, max);
  possible_split_values.reserve(num_random_splits);
  for (size_t i = 0; i < num_random_splits; ++i) {
    possible_split_values.push_back(udist(random_number_generator));
  }
  if (num_random_splits > 1) {
    std::sort(possible_split_values.begin(), possible_split_values.end());
  }

  const size_t num_splits = possible_split_values.size();
  if (memory_saving_splitting) {
    std::vector<size_t> class_counts_right(num_splits * num_classes), n_right(num_splits);
    findBestSplitValueExtraTrees(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
        best_decrease, possible_split_values, class_counts_right, n_right);
  } else {
    std::fill_n(counter_per_class.begin(), num_splits * num_classes, 0);
    std::fill_n(counter.begin(), num_splits, 0);
    findBestSplitValueExtraTrees(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
        best_decrease, possible_split_values, counter_per_class, counter);
  }
}

void TreeClassification::findBestSplitValueExtraTrees(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease, const std::vector<double>& possible_split_values, std::vector<size_t>& class_counts_right,
    std::vector<size_t>& n_right) {
  const size_t num_splits = possible_split_values.size();

  // Count samples in right child per class and possbile split
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    double value = data->get_x(sampleID, varID);
    uint sample_classID = (*response_classIDs)[sampleID];

    // Count samples until split_value reached
    for (size_t i = 0; i < num_splits; ++i) {
      if (value > possible_split_values[i]) {
        ++n_right[i];
        ++class_counts_right[i * num_classes + sample_classID];
      } else {
        break;
      }
    }
  }

  // Compute decrease of impurity for each possible split
  for (size_t i = 0; i < num_splits; ++i) {

    // Stop if one child empty
    size_t n_left = num_samples_node - n_right[i];
    if (n_left == 0 || n_right[i] == 0) {
      continue;
    }

    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right[i] < (*min_bucket)[0])) {
      continue;
    }

    // Sum of squares
    double sum_left = 0;
    double sum_right = 0;
    for (size_t j = 0; j < num_classes; ++j) {
      size_t class_count_right = class_counts_right[i * num_classes + j];
      size_t class_count_left = class_counts[j] - class_count_right;

      sum_right += (*class_weights)[j] * class_count_right * class_count_right;
      sum_left += (*class_weights)[j] * class_count_left * class_count_left;
    }
    
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_left = class_counts[j] - class_counts_right[j];
        if (class_count_left < (*min_bucket)[j] || class_counts_right[j] < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }

    // Decrease of impurity
    double decrease = sum_left / (double) n_left + sum_right / (double) n_right[i];

    // Regularization
    regularize(decrease, varID);

    // If better than before, use this
    if (decrease > best_decrease) {
      best_value = possible_split_values[i];
      best_varID = varID;
      best_decrease = decrease;
    }
  }
}

void TreeClassification::findBestSplitValueExtraTreesUnordered(size_t nodeID, size_t varID, size_t num_classes,
    const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
    double& best_decrease) {

  size_t num_unique_values = data->getNumUniqueDataValues(varID);

  // Get all factor indices in node
  std::vector<bool> factor_in_node(num_unique_values, false);
  for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
    size_t sampleID = sampleIDs[pos];
    size_t index = data->getIndex(sampleID, varID);
    factor_in_node[index] = true;
  }

  // Vector of indices in and out of node
  std::vector<size_t> indices_in_node;
  std::vector<size_t> indices_out_node;
  indices_in_node.reserve(num_unique_values);
  indices_out_node.reserve(num_unique_values);
  for (size_t i = 0; i < num_unique_values; ++i) {
    if (factor_in_node[i]) {
      indices_in_node.push_back(i);
    } else {
      indices_out_node.push_back(i);
    }
  }

  // Generate num_random_splits splits
  for (size_t i = 0; i < num_random_splits; ++i) {
    std::vector<size_t> split_subset;
    split_subset.reserve(num_unique_values);

    // Draw random subsets, sample all partitions with equal probability
    if (indices_in_node.size() > 1) {
      size_t num_partitions = (2ULL << (indices_in_node.size() - 1ULL)) - 2ULL; // 2^n-2 (don't allow full or empty)
      std::uniform_int_distribution<size_t> udist(1, num_partitions);
      size_t splitID_in_node = udist(random_number_generator);
      for (size_t j = 0; j < indices_in_node.size(); ++j) {
        if ((splitID_in_node & (1ULL << j)) > 0) {
          split_subset.push_back(indices_in_node[j]);
        }
      }
    }
    if (indices_out_node.size() > 1) {
      size_t num_partitions = (2ULL << (indices_out_node.size() - 1ULL)) - 1ULL; // 2^n-1 (allow full or empty)
      std::uniform_int_distribution<size_t> udist(0, num_partitions);
      size_t splitID_out_node = udist(random_number_generator);
      for (size_t j = 0; j < indices_out_node.size(); ++j) {
        if ((splitID_out_node & (1ULL << j)) > 0) {
          split_subset.push_back(indices_out_node[j]);
        }
      }
    }

    // Assign union of the two subsets to right child
    size_t splitID = 0;
    for (auto& idx : split_subset) {
      splitID |= 1ULL << idx;
    }

    // Initialize
    std::vector<size_t> class_counts_right(num_classes);
    size_t n_right = 0;

    // Count classes in left and right child
    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      uint sample_classID = (*response_classIDs)[sampleID];
      double value = data->get_x(sampleID, varID);
      size_t factorID = floor(value) - 1;

      // If in right child, count
      // In right child, if bitwise splitID at position factorID is 1
      if ((splitID & (1ULL << factorID))) {
        ++n_right;
        ++class_counts_right[sample_classID];
      }
    }
    size_t n_left = num_samples_node - n_right;

    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right < (*min_bucket)[0])) {
      continue;
    }

    // Sum of squares
    double sum_left = 0;
    double sum_right = 0;
    for (size_t j = 0; j < num_classes; ++j) {
      size_t class_count_right = class_counts_right[j];
      size_t class_count_left = class_counts[j] - class_count_right;

      sum_right += (*class_weights)[j] * class_count_right * class_count_right;
      sum_left += (*class_weights)[j] * class_count_left * class_count_left;
    }
    
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_left = class_counts[j] - class_counts_right[j];
        if (class_count_left < (*min_bucket)[j] || class_counts_right[j] < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }

    // Decrease of impurity
    double decrease = sum_left / (double) n_left + sum_right / (double) n_right;

    // Regularization
    regularize(decrease, varID);

    // If better than before, use this
    if (decrease > best_decrease) {
      best_value = splitID;
      best_varID = varID;
      best_decrease = decrease;
    }
  }
}

void TreeClassification::findBestSplitValueNanSmallQ(size_t nodeID, size_t varID, size_t num_classes,
                                                  const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
                                                  double& best_decrease) {
  
  // Create possible split values
  std::vector<double> possible_split_values;
  data->getAllValues(possible_split_values, sampleIDs, varID, start_pos[nodeID], end_pos[nodeID]);
  
  // Try next variable if all equal for this
  if (possible_split_values.size() < 2) {
    return;
  }
  
  const size_t num_splits = possible_split_values.size();
  if (memory_saving_splitting) {
    std::vector<size_t> class_counts_right(num_splits * num_classes), n_right(num_splits);
    findBestSplitValueSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
                             best_decrease, possible_split_values, class_counts_right, n_right);
  } else {
    std::fill_n(counter_per_class.begin(), num_splits * num_classes, 0);
    std::fill_n(counter.begin(), num_splits, 0);
    findBestSplitValueSmallQ(nodeID, varID, num_classes, class_counts, num_samples_node, best_value, best_varID,
                             best_decrease, possible_split_values, counter_per_class, counter);
  }
}

void TreeClassification::findBestSplitValueNanSmallQ(size_t nodeID, size_t varID, size_t num_classes,
                                                  const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
                                                  double& best_decrease, const std::vector<double>& possible_split_values, std::vector<size_t>& counter_per_class,
                                                  std::vector<size_t>& counter) {
  
  // Counters without NaNs
  std::vector<size_t> class_counts_nan(num_classes, 0);
  size_t num_samples_node_nan = 0;
  
  size_t last_index = possible_split_values.size() - 1;
  if (std::isnan(possible_split_values[last_index])) {
    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      uint sample_classID = (*response_classIDs)[sampleID];
      
      if (std::isnan(data->get_x(sampleID, varID))) {
        ++num_samples_node_nan;
        ++class_counts_nan[sample_classID];
      } else {
        size_t idx = std::lower_bound(possible_split_values.begin(), possible_split_values.end(),
                                      data->get_x(sampleID, varID)) - possible_split_values.begin();
        ++counter_per_class[idx * num_classes + sample_classID];
        ++counter[idx];
      }
    }
  } else {
    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      uint sample_classID = (*response_classIDs)[sampleID];
      size_t idx = std::lower_bound(possible_split_values.begin(), possible_split_values.end(),
                                    data->get_x(sampleID, varID)) - possible_split_values.begin();
      
      ++counter_per_class[idx * num_classes + sample_classID];
      ++counter[idx];
    }
  }
  
  size_t n_left = 0;
  std::vector<size_t> class_counts_left(num_classes);
  
  // Compute decrease of impurity for each split
  for (size_t i = 0; i < possible_split_values.size() - 1; ++i) {
    
    // Stop if nothing here
    if (counter[i] == 0) {
      continue;
    }
    
    n_left += counter[i];
    
    // Stop if right child empty
    size_t n_right = num_samples_node - num_samples_node_nan - n_left;
    if (n_right == 0) {
      break;
    }
    
    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right < (*min_bucket)[0])) {
      continue;
    }
    
    double decrease;
    double decrease_nanleft;
    double decrease_nanright;

    // Sum of squares
    double sum_left = 0;
    double sum_right = 0;
    double sum_left_withnan = 0;
    double sum_right_withnan = 0;
    for (size_t j = 0; j < num_classes; ++j) {
      class_counts_left[j] += counter_per_class[i * num_classes + j];
      size_t class_count_right = class_counts[j] - class_counts_nan[j] - class_counts_left[j];
      
      sum_left += (*class_weights)[j] * class_counts_left[j] * class_counts_left[j];
      sum_right += (*class_weights)[j] * class_count_right * class_count_right;
      
      sum_left_withnan += (*class_weights)[j] * (class_counts_left[j] + class_counts_nan[j]) * (class_counts_left[j] + class_counts_nan[j]);
      sum_right_withnan += (*class_weights)[j] * (class_count_right + class_counts_nan[j]) * (class_count_right + class_counts_nan[j]);
    }
    
    // Decrease of impurity
    decrease_nanleft = sum_right / (double) n_right + sum_left_withnan / (double) (n_left + num_samples_node_nan);
    decrease_nanright = sum_right_withnan / (double) (n_right + num_samples_node_nan) + sum_left / (double) n_left;
  
    if (decrease_nanright > decrease_nanleft) {
      decrease = decrease_nanright;
    } else {
      decrease = decrease_nanleft;
    }
  
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_right = class_counts[j] - class_counts_left[j];
        if (class_counts_left[j] < (*min_bucket)[j] || class_count_right < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }
    
    // Regularization
    regularize(decrease, varID);
    
    // If better than before, use this
    if (decrease > best_decrease) {
      // Use mid-point split
      best_value = (possible_split_values[i] + possible_split_values[i + 1]) / 2;
      best_varID = varID;
      best_decrease = decrease;
      
      if (decrease_nanright > decrease_nanleft) {
        nan_go_right = true;
      } else {
        nan_go_right = false;
      }
      
      // Use smaller value if average is numerically the same as the larger value
      if (best_value == possible_split_values[i + 1]) {
        best_value = possible_split_values[i];
      }
    }
  }
}

void TreeClassification::findBestSplitValueNanLargeQ(size_t nodeID, size_t varID, size_t num_classes,
                                                         const std::vector<size_t>& class_counts, size_t num_samples_node, double& best_value, size_t& best_varID,
                                                         double& best_decrease) {
  
  // Set counters to 0
  size_t num_unique = data->getNumUniqueDataValues(varID);
  std::fill_n(counter_per_class.begin(), num_unique * num_classes, 0);
  std::fill_n(counter.begin(), num_unique, 0);
  
  // Counters without NaNs
  std::vector<size_t> class_counts_nan(num_classes, 0);
  size_t num_samples_node_nan = 0;
  
  // Count values
  size_t last_index = data->getNumUniqueDataValues(varID) - 1;
  if (std::isnan(data->getUniqueDataValue(varID, last_index))) {
    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      size_t index = data->getIndex(sampleID, varID);
      size_t classID = (*response_classIDs)[sampleID];
      
      if (index < last_index) {
        ++counter[index];
        ++counter_per_class[index * num_classes + classID];
      } else {
        ++num_samples_node_nan;
        ++class_counts_nan[classID];
      }
    }
  } else {
    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      size_t index = data->getIndex(sampleID, varID);
      size_t classID = (*response_classIDs)[sampleID];
      
      ++counter[index];
      ++counter_per_class[index * num_classes + classID];
    }
  }
  
  size_t n_left = 0;
  std::vector<size_t> class_counts_left(num_classes);
  
  // Compute decrease of impurity for each split
  for (size_t i = 0; i < num_unique - 1; ++i) {
    
    // Stop if nothing here
    if (counter[i] == 0) {
      continue;
    }
    
    n_left += counter[i];
    
    // Stop if right child empty
    size_t n_right = num_samples_node - num_samples_node_nan - n_left;
    if (n_right == 0) {
      break;
    }
    
    // Stop if minimal bucket size reached
    if (min_bucket->size() == 1 && (n_left < (*min_bucket)[0] || n_right < (*min_bucket)[0])) {
      continue;
    }
    
    double decrease;
    double decrease_nanleft;
    double decrease_nanright;

    // Sum of squares
    double sum_left = 0;
    double sum_right = 0;
    double sum_left_withnan = 0;
    double sum_right_withnan = 0;
    for (size_t j = 0; j < num_classes; ++j) {
      class_counts_left[j] += counter_per_class[i * num_classes + j];
      size_t class_count_right = class_counts[j] - class_counts_nan[j] - class_counts_left[j];
      
      sum_left += (*class_weights)[j] * class_counts_left[j] * class_counts_left[j];
      sum_right += (*class_weights)[j] * class_count_right * class_count_right;
      
      sum_left_withnan += (*class_weights)[j] * (class_counts_left[j] + class_counts_nan[j]) * (class_counts_left[j] + class_counts_nan[j]);
      sum_right_withnan += (*class_weights)[j] * (class_count_right + class_counts_nan[j]) * (class_count_right + class_counts_nan[j]);
    }
    
    // Decrease of impurity
    decrease_nanleft = sum_right / (double) n_right + sum_left_withnan / (double) (n_left + num_samples_node_nan);
    decrease_nanright = sum_right_withnan / (double) (n_right + num_samples_node_nan) + sum_left / (double) n_left;
    
    if (decrease_nanright > decrease_nanleft) {
      decrease = decrease_nanright;
    } else {
      decrease = decrease_nanleft;
    }
    
    // Stop if class-wise minimal bucket size reached
    if (min_bucket->size() > 1) {
      bool stop = false;
      for (size_t j = 0; j < num_classes; ++j) {
        size_t class_count_right = class_counts[j] - class_counts_left[j];
        if (class_counts_left[j] < (*min_bucket)[j] || class_count_right < (*min_bucket)[j]) {
          stop = true;
          break;
        }
      }
      if (stop) {
        continue;
      }
    }
    
    // Regularization
    regularize(decrease, varID);
    
    // If better than before, use this
    if (decrease > best_decrease) {
      // Find next value in this node
      size_t j = i + 1;
      while (j < num_unique && counter[j] == 0) {
        ++j;
      }
      
      // Use mid-point split
      best_value = (data->getUniqueDataValue(varID, i) + data->getUniqueDataValue(varID, j)) / 2;
      best_varID = varID;
      best_decrease = decrease;
      
      if (decrease_nanright > decrease_nanleft) {
        nan_go_right = true;
      } else {
        nan_go_right = false;
      }
      
      // Use smaller value if average is numerically the same as the larger value
      if (best_value == data->getUniqueDataValue(varID, j)) {
        best_value = data->getUniqueDataValue(varID, i);
      }
    }
  }
}

void TreeClassification::addGiniImportance(size_t nodeID, size_t varID, double decrease) {

  double best_decrease = decrease;
  if (splitrule != HELLINGER) {
    size_t num_samples_node = end_pos[nodeID] - start_pos[nodeID];
    std::vector<size_t> class_counts;
    class_counts.resize(class_values->size(), 0);

    for (size_t pos = start_pos[nodeID]; pos < end_pos[nodeID]; ++pos) {
      size_t sampleID = sampleIDs[pos];
      uint sample_classID = (*response_classIDs)[sampleID];
      class_counts[sample_classID]++;
    }
    double sum_node = 0;
    for (size_t i = 0; i < class_counts.size(); ++i) {
      sum_node += (*class_weights)[i] * class_counts[i] * class_counts[i];
    }

    double impurity_node = (sum_node / (double) num_samples_node);

    // Account for the regularization
    regularize(impurity_node, varID);

    best_decrease = decrease - impurity_node;
  }

  // No variable importance for no split variables
  size_t tempvarID = data->getUnpermutedVarID(varID);

  // Subtract if corrected importance and permuted variable, else add
  if (importance_mode == IMP_GINI_CORRECTED && varID >= data->getNumCols()) {
    (*variable_importance)[tempvarID] -= best_decrease;
  } else {
    (*variable_importance)[tempvarID] += best_decrease;
  }
}

void TreeClassification::bootstrapClassWise() {
  // Number of samples is sum of sample fraction * number of samples
  size_t num_samples_inbag = 0;
  double sum_sample_fraction = 0;
  for (auto& s : *sample_fraction) {
    num_samples_inbag += (size_t) num_samples * s;
    sum_sample_fraction += s;
  }

  // Reserve space, reserve a little more to be save)
  sampleIDs.reserve(num_samples_inbag);
  oob_sampleIDs.reserve(num_samples * (exp(-sum_sample_fraction) + 0.1));

  // Start with all samples OOB
  inbag_counts.resize(num_samples, 0);

  // Draw samples for each class
  for (size_t i = 0; i < sample_fraction->size(); ++i) {
    // Draw samples of class with replacement as inbag and mark as not OOB
    size_t num_samples_class = (*sampleIDs_per_class)[i].size();
    size_t num_samples_inbag_class = round(num_samples * (*sample_fraction)[i]);
    std::uniform_int_distribution<size_t> unif_dist(0, num_samples_class - 1);
    for (size_t s = 0; s < num_samples_inbag_class; ++s) {
      size_t draw = (*sampleIDs_per_class)[i][unif_dist(random_number_generator)];
      sampleIDs.push_back(draw);
      ++inbag_counts[draw];
    }
  }

  // Save OOB samples
  for (size_t s = 0; s < inbag_counts.size(); ++s) {
    if (inbag_counts[s] == 0) {
      oob_sampleIDs.push_back(s);
    }
  }
  num_samples_oob = oob_sampleIDs.size();

  if (!keep_inbag) {
    inbag_counts.clear();
    inbag_counts.shrink_to_fit();
  }
}

void TreeClassification::bootstrapWithoutReplacementClassWise() {
  // Draw samples for each class
  for (size_t i = 0; i < sample_fraction->size(); ++i) {
    size_t num_samples_class = (*sampleIDs_per_class)[i].size();
    size_t num_samples_inbag_class = round(num_samples * (*sample_fraction)[i]);

    shuffleAndSplitAppend(sampleIDs, oob_sampleIDs, num_samples_class, num_samples_inbag_class,
        (*sampleIDs_per_class)[i], random_number_generator);
  }
  num_samples_oob = oob_sampleIDs.size();

  if (keep_inbag) {
    // All observation are 0 or 1 times inbag
    inbag_counts.resize(num_samples, 1);
    for (size_t i = 0; i < oob_sampleIDs.size(); i++) {
      inbag_counts[oob_sampleIDs[i]] = 0;
    }
  }
}

} // namespace ranger