1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
// -*- mode: C++; c-indent-level: 4; c-basic-offset: 4; indent-tabs-mode: nil; -*-
//
// Rlapack.cpp: RcppArmadillo unit tests for borked Lapack
//
// Copyright (C) 2018 Keith O'Hara and Dirk Eddelbuettel
//
// This file is part of RcppArmadillo.
//
// RcppArmadillo is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// RcppArmadillo is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with RcppArmadillo. If not, see <http://www.gnu.org/licenses/>.
// #define ARMA_EXTRA_DEBUG
#include <RcppArmadillo.h>
using namespace Rcpp;
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
arma::cx_mat cx_eig_pair_test(const int n)
{
arma::cx_mat A = arma::randu<arma::cx_mat>(n,n);
arma::cx_mat B = arma::randu<arma::cx_mat>(n,n);
arma::cx_vec eigval;
arma::cx_mat eigvec;
arma::eig_pair(eigval, eigvec, A, B);
return A*eigvec - B*eigvec*arma::diagmat(eigval);
}
// [[Rcpp::export]]
arma::cx_mat cx_qz_test(const int n)
{
// test qz in complex matrix case
arma::cx_mat A = arma::randu<arma::cx_mat>(n,n);
arma::cx_mat B = arma::randu<arma::cx_mat>(n,n);
arma::cx_mat AA;
arma::cx_mat BB;
arma::cx_mat Q;
arma::cx_mat Z;
arma::qz(AA,BB,Q,Z,A,B);
return A - Q.t()*AA*Z.t();
}
// [[Rcpp::export]]
int cx_rank_test(const int n)
{
// test svd_dc
arma::cx_mat A = arma::randu<arma::cx_mat>(n,n+1);
int rA = arma::rank(A);
return rA;
}
// [[Rcpp::export]]
arma::cx_mat cx_pinv_test(const int n)
{
// test svd_dc
arma::cx_mat A = arma::randu<arma::cx_mat>(n,n+1);
arma::cx_mat B = arma::pinv(A);
return A*B;
}
// [[Rcpp::export]]
arma::cx_mat cx_schur_test(const int n)
{
arma::cx_mat A = arma::randu<arma::cx_mat>(n,n);
arma::cx_mat U;
arma::cx_mat S;
arma::schur(U,S,A);
return A - U*S*U.t();
}
// [[Rcpp::export]]
arma::cx_mat cx_solve_test(const int n)
{
arma::cx_mat A = arma::randu<arma::cx_mat>(n,n);
arma::cx_vec b = arma::randu<arma::cx_vec>(n);
arma::cx_mat B = arma::randu<arma::cx_mat>(n,n);
arma::cx_vec x1 = solve(A, b);
arma::cx_vec x2;
solve(x2, A, b);
arma::cx_mat X1 = solve(A, B);
arma::cx_mat X2 = solve(A, B, arma::solve_opts::fast); // enable fast mode
// next for non-square matrices; to test solve_approx_svd
arma::cx_mat C = arma::randu<arma::cx_mat>(n,n+1);
arma::cx_vec x3 = solve(C, b);
return C*x3 - b;
}
// [[Rcpp::export]]
arma::cx_mat cx_solve_band_test(const int n)
{
// trigger solve_tridiag_refine
int n_tri_rows = std::min(34,n);
arma::cx_mat A_tri = arma::zeros<arma::cx_mat>(n_tri_rows,n_tri_rows);
A_tri.diag() = arma::randu<arma::cx_mat>(n_tri_rows,1);
A_tri.diag(1) = arma::randu<arma::cx_mat>(n_tri_rows-1,1);
A_tri.diag(-1) = arma::randu<arma::cx_mat>(n_tri_rows-1,1);
arma::cx_vec b_tri = arma::randu<arma::cx_vec>(n_tri_rows);
arma::cx_vec x_tri = solve(A_tri, b_tri);
return A_tri*x_tri - b_tri;
}
|