File: innerproduct.cpp

package info (click to toggle)
r-cran-rcppparallel 5.1.7%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 544 kB
  • sloc: cpp: 1,852; sh: 19; makefile: 11
file content (62 lines) | stat: -rw-r--r-- 1,676 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
 * @title Computing an Inner Product with RcppParallel
 * @author JJ Allaire
 * @license GPL (>= 2)
 */

#include <Rcpp.h>
using namespace Rcpp;

#include <algorithm>

// [[Rcpp::export]]
double innerProduct(NumericVector x, NumericVector y) {
   return std::inner_product(x.begin(), x.end(), y.begin(), 0.0);
}

// [[Rcpp::depends(RcppParallel)]]
#include <RcppParallel.h>
using namespace RcppParallel;

struct InnerProduct : public Worker
{   
   // source vectors
   const RVector<double> x;
   const RVector<double> y;
   
   // product that I have accumulated
   double product;
   
   // constructors
   InnerProduct(const NumericVector x, const NumericVector y) 
      : x(x), y(y), product(0) {}
   InnerProduct(const InnerProduct& innerProduct, Split) 
      : x(innerProduct.x), y(innerProduct.y), product(0) {}
   
   // process just the elements of the range I have been asked to
   void operator()(std::size_t begin, std::size_t end) {
      product += std::inner_product(x.begin() + begin, 
                                    x.begin() + end, 
                                    y.begin() + begin, 
                                    0.0);
   }
   
   // join my value with that of another InnerProduct
   void join(const InnerProduct& rhs) { 
     product += rhs.product; 
   }
};

// [[Rcpp::export]]
double parallelInnerProduct(NumericVector x, NumericVector y) {
   
   // declare the InnerProduct instance that takes a pointer to the vector data
   InnerProduct innerProduct(x, y);
   
   // call paralleReduce to start the work
   parallelReduce(0, x.length(), innerProduct);
   
   // return the computed product
   return innerProduct.product;
}