1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
#
# Copyright (C) 2014-2025 Jan Marvin Garbuszus and Sebastian Jeworutzki
# Copyright (C) of 'convert.dates' and 'missing.types' Thomas Lumley
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along
# with this program. If not, see <http://www.gnu.org/licenses/>.
#' Read Stata Binary Files
#'
#' \code{read.dta13} reads a Stata dta-file and imports the data into a
#' data.frame.
#'
#' @param file \emph{character.} Path to the dta file you want to import.
#' @param convert.factors \emph{logical.} If \code{TRUE}, factors from Stata
#' value labels are created.
#' @param generate.factors \emph{logical.} If \code{TRUE} and convert.factors is
#' TRUE, missing factor labels are created from integers. If duplicated labels
#' are found, unique labels will be generated according the following scheme:
#' "label_(integer code)".
#' @param encoding \emph{character.} Strings can be converted from Windows-1252
#' or UTF-8 to system encoding. Options are "latin1" or "UTF-8" to specify
#' target encoding explicitly. Since Stata 14 files are UTF-8 encoded and
#' may contain strings which can't be displayed in the current locale.
#' Set encoding=NULL to stop reencoding.
#' @param fromEncoding \emph{character.} We expect strings to be encoded as
#' "CP1252" for Stata Versions 13 and older. For dta files saved with Stata 14
#' or newer "UTF-8" is used. In some situation the used encoding can differ for
#' Stata 14 files and must be manually set.
#' @param convert.underscore \emph{logical.} If \code{TRUE}, "_" in variable
#' names will be changed to "."
#' @param missing.type \emph{logical.} Stata knows 27 different missing types:
#' ., .a, .b, ..., .z. If \code{TRUE}, attribute \code{missing} will be
#' created.
#' @param replace.strl \emph{logical.} If \code{TRUE}, replace the reference to
#' a strL string in the data.frame with the actual value. The strl attribute
#' will be removed from the data.frame (see details).
#' @param convert.dates \emph{logical.} If \code{TRUE}, Stata dates are
#' converted.
#' @param add.rownames \emph{logical.} If \code{TRUE}, the first column will be
#' used as rownames. Variable will be dropped afterwards.
#' @param nonint.factors \emph{logical.} If \code{TRUE}, factors labels
#' will be assigned to variables of type float and double.
#' @param select.rows \emph{integer.} Vector of one or two numbers. If single
#' value rows from 1:val are selected. If two values of a range are selected
#' the rows in range will be selected.
#' @param select.cols \emph{character.} or \emph{numeric.} Vector of variables
#' to select. Either variable names or position.
#' @param strlexport \emph{logical.} Should strl content be exported as binary
#' files?
#' @param strlpath \emph{character.} Path for strl export.
#' @param tz \emph{character.} time zone specification to be used for
#' POSIXct values. ‘""’ is the current time zone, and ‘"GMT"’ is UTC
#' (Universal Time, Coordinated).
#'
#' @details If the filename is a url, the file will be downloaded as a temporary
#' file and read afterwards.
#'
#' Stata files are encoded in ansinew. Depending on your system's default
#' encoding certain characters may appear wrong. Using a correct encoding may
#' fix these.
#'
#' Variable names stored in the dta-file will be used in the resulting
#' data.frame. Stata types char, byte, and int will become integer; float and
#' double will become numerics. R only knows a single missing type, while Stata
#' knows 27, so all Stata missings will become NA in R. If you need to keep
#' track of Statas original missing types, you may use
#' \code{missing.type=TRUE}.
#'
#' Stata dates are converted to R's Date class the same way foreign handles
#' dates.
#'
#' Stata 13 introduced a new character type called strL. strLs are able to store
#' strings up to 2 billion characters. While R is able to store
#' strings of this size in a character vector, the printed representation of
#' such vectors looks rather cluttered, so it's possible to save only a
#' reference in the data.frame with option \code{replace.strl=FALSE}.
#'
#' In R, you may use rownames to store characters (see for instance
#' \code{data(swiss)}). In Stata, this is not possible and rownames have to be
#' stored as a variable. If you want to use rownames, set add.rownames to TRUE.
#' Then the first variable of the dta-file will hold the rownames of the
#' resulting data.frame.
#'
#' Reading dta-files of older and newer versions than 13 was introduced
#' with version 0.8.
#'
#' Stata 18 introduced alias variables and frame files. Alias variables are
#' currently ignored when reading the file and a warning is printed. Stata
#' frame files (file extension `.dtas`) contain zipped `dta` files which can
#' be imported with \code{\link{read.dtas}}.
#'
#' @return The function returns a data.frame with attributes. The attributes
#' include
#' \describe{
#' \item{datalabel:}{Dataset label}
#' \item{time.stamp:}{Timestamp of file creation}
#' \item{formats:}{Stata display formats. May be used with
#' \code{\link{sprintf}}}
#' \item{types:}{Stata data type (see Stata Corp 2014)}
#' \item{val.labels:}{For each variable the name of the associated value
#' labels in "label"}
#' \item{var.labels:}{Variable labels}
#' \item{version:}{dta file format version}
#' \item{label.table:}{List of value labels.}
#' \item{strl:}{Character vector with long strings for the new strl string
#' variable type. The name of every element is the identifier.}
#' \item{expansion.fields:}{list providing variable name, characteristic name
#' and the contents of Stata characteristic field.}
#' \item{missing:}{List of numeric vectors with Stata missing type for each
#' variable.}
#' \item{byteorder:}{Byteorder of the dta-file. LSF or MSF.}
#' \item{orig.dim:}{Dimension recorded inside the dta-file.}
#' }
#' @note read.dta13 uses GPL 2 licensed code by Thomas Lumley and R-core members
#' from foreign::read.dta().
#' @seealso \code{\link[foreign]{read.dta}} in package \code{foreign} and
#' \code{memisc} for dta files from Stata
#' versions < 13 and \code{read_dta} in package \code{haven} for Stata version
#' >= 13.
#' @references Stata Corp (2014): Description of .dta file format
#' \url{https://www.stata.com/help.cgi?dta}
#' @examples
#' \dontrun{
#' library(readstata13)
#' r13 <- read.dta13("https://www.stata-press.com/data/r13/auto.dta")
#' }
#' @author Jan Marvin Garbuszus \email{jan.garbuszus@@ruhr-uni-bochum.de}
#' @author Sebastian Jeworutzki \email{sebastian.jeworutzki@@ruhr-uni-bochum.de}
#' @useDynLib readstata13, .registration = TRUE
#' @importFrom utils download.file
#' @importFrom stats na.omit
#' @export
read.dta13 <- function(file, convert.factors = TRUE, generate.factors=FALSE,
encoding = "UTF-8", fromEncoding=NULL,
convert.underscore = FALSE, missing.type = FALSE,
convert.dates = TRUE, replace.strl = TRUE,
add.rownames = FALSE, nonint.factors = FALSE,
select.rows = NULL, select.cols = NULL,
strlexport = FALSE, strlpath = ".", tz = "GMT") {
# List to collect all warnings from factor conversion
collected_warnings <- list(misslab = NULL, floatfact = NULL)
# Check if path is a url
if (length(grep("^(http|ftp|https)://", file))) {
tmp <- tempfile()
download.file(file, tmp, quiet = TRUE, mode = "wb")
filepath <- tmp
on.exit(unlink(filepath))
} else {
# construct filepath and read file
filepath <- get.filepath(file)
}
if (!file.exists(filepath))
stop("File not found.")
# some select.row checks
if (!is.null(select.rows)) {
# check that it is a numeric
if (!is.numeric(select.rows)){
return(message("select.rows must be of type numeric"))
} else {
# guard against negative values
if (any(select.rows < 0) )
select.rows <- abs(select.rows)
# check that length is not > 2
if (length(select.rows) > 2)
return(message("select.rows must be of length 1 or 2."))
# if length 1 start at row 1
if (length(select.rows) == 1)
select.rows <- c(1, select.rows)
}
# reorder if 2 is bigger than 1
if (select.rows[2] < select.rows[1])
select.rows <- c(select.rows[2], select.rows[1])
# make sure to start at index position 1 if select.rows[2] > 0
if (select.rows[2] > 0 & select.rows[1] == 0)
select.rows[1] <- 1
} else {
# set a value
select.rows <- c(0,0)
}
select.cols_chr <- as.character(NA)
select.cols_int <- as.integer(NA)
# treat names and index differently
if (!is.null(select.cols)) {
if (is.character(select.cols))
select.cols_chr <- select.cols
# do we need factor too?
if (is.numeric(select.cols) | is.integer(select.cols))
select.cols_int <- select.cols
}
data <- stata_read(filepath, missing.type, select.rows,
select.cols_chr, select.cols_int,
strlexport, strlpath)
version <- attr(data, "version")
sstr <- 2045
sstrl <- 32768
salias <- 65525
sdouble <- 65526
sfloat <- 65527
slong <- 65528
sint <- 65529
sbyte <- 65530
if (version < 117) {
sstr <- 244
sstrl <- 255
sdouble <- 255
sfloat <- 254
slong <- 253
sint <- 252
sbyte <- 251
}
if (convert.underscore)
names(data) <- gsub("_", ".", names(data))
types <- attr(data, "types")
val.labels <- attr(data, "val.labels")
label <- attr(data, "label.table")
if (missing.type) {
stata.na <- data.frame(type = sdouble:sbyte,
min = c(101, 32741, 2147483621, 2 ^ 127, 2 ^ 1023),
inc = c(1, 1, 1, 2 ^ 115, 2 ^ 1011)
)
if (version >= 113L & version < 117L) {
missings <- vector("list", length(data))
names(missings) <- names(data)
for (v in which(types > 250L)) {
this.type <- types[v] - 250L
nas <- is.na(data[[v]]) | data[[v]] >= stata.na$min[this.type]
natype <- (data[[v]][nas] - stata.na$min[this.type])/
stata.na$inc[this.type]
natype[is.na(natype)] <- 0L
missings[[v]] <- rep(NA, NROW(data))
missings[[v]][nas] <- natype
data[[v]][nas] <- NA
}
attr(data, "missing") <- missings
} else {
if (version >= 117L) {
missings <- vector("list", length(data))
names(missings) <- names(data)
for (v in which(types > 65525L)) {
this.type <- 65531L - types[v]
nas <- is.na(data[[v]]) | data[[v]] >= stata.na$min[this.type]
natype <- (data[[v]][nas] - stata.na$min[this.type]) /
stata.na$inc[this.type]
natype[is.na(natype)] <- 0L
missings[[v]] <- rep(NA, NROW(data))
missings[[v]][nas] <- natype
data[[v]][nas] <- NA
}
attr(data, "missing") <- missings
} else
warning("'missing.type' only applicable to version >= 8 files")
}
}
var.labels <- attr(data, "var.labels")
datalabel <- attr(data, "data.label")
## Encoding
if(!is.null(encoding)) {
# set from encoding by dta version
if(is.null(fromEncoding)) {
fromEncoding <- "CP1252"
if(attr(data, "version") >= 118L)
fromEncoding <- "UTF-8"
}
attr(data, "data.label") <- read.encoding(datalabel, fromEncoding,
encoding)
# varnames
names(data) <- read.encoding(names(data), fromEncoding, encoding)
# var.labels
attr(data, "var.labels") <- read.encoding(var.labels, fromEncoding,
encoding)
# val.labels
names(val.labels) <- read.encoding(val.labels, fromEncoding, encoding)
attr(data, "val.labels") <- val.labels
# label
names(label) <- read.encoding(names(label), fromEncoding, encoding)
if (length(label) > 0) {
for (i in 1:length(label)) {
names(label[[i]]) <- read.encoding(names(label[[i]]), fromEncoding,
encoding)
}
attr(data, "label.table") <- label
}
# recode character variables
for (v in (1:ncol(data))[types <= sstr]) {
data[, v] <- iconv(data[, v], from=fromEncoding, to=encoding, sub="byte")
}
# expansion.field
efi <- attr(data, "expansion.fields")
if (length(efi) > 0) {
efiChar <- unlist(lapply(efi, is.character))
for (i in (1:length(efi))[efiChar]) {
efi[[i]] <- read.encoding(efi[[i]], fromEncoding, encoding)
}
attr(data, "expansion.fields") <- efi
}
if (version >= 117L) {
#strl
strl <- attr(data, "strl")
if (length(strl) > 0) {
for (i in 1:length(strl)) {
strl[[i]] <- read.encoding(strl[[i]], fromEncoding, encoding)
}
attr(data, "strl") <- strl
}
}
}
var.labels <- attr(data, "var.labels")
if (replace.strl & version >= 117L) {
strl <- c("")
names(strl) <- "00000000000000000000"
strl <- c(strl, attr(data,"strl"))
for (j in seq(ncol(data))[types == sstrl] ) {
data[, j] <- strl[data[,j]]
}
# if strls are in data.frame remove attribute strl
attr(data, "strl") <- NULL
}
if (convert.dates) {
ff <- attr(data, "formats")
## dates <- grep("%-*d", ff)
## Stata 12 introduced 'business dates'
## 'Formats beginning with %t or %-t are Stata's date and time formats.'
## but it seems some are earlier.
## The dta_115 description suggests this is too inclusive:
## 'Stata has an old *%d* format notation and some datasets
## still have them. Format *%d*... is equivalent to modern
## format *%td*... and *%-d*... is equivalent to *%-td*...'
dates <- grep("^%(-|)(d|td)", ff)
## avoid as.Date in case strptime is messed up
base <- structure(-3653L, class = "Date") # Stata dates are integer vars
for (v in dates) data[[v]] <- structure(base + data[[v]], class = "Date")
for (v in grep("%tc", ff)) data[[v]] <- convert_dt_c(data[[v]], tz)
for (v in grep("%tC", ff)) data[[v]] <- convert_dt_C(data[[v]], tz)
for (v in grep("%tm", ff)) data[[v]] <- convert_dt_m(data[[v]])
for (v in grep("%tq", ff)) data[[v]] <- convert_dt_q(data[[v]])
for (v in grep("%ty", ff)) data[[v]] <- convert_dt_y(data[[v]])
}
if (convert.factors) {
vnames <- names(data)
for (i in seq_along(val.labels)) {
labname <- val.labels[i]
vartype <- types[i]
labtable <- label[[labname]]
#don't convert columns of type double or float to factor
if (labname %in% names(label)) {
if((vartype == sdouble | vartype == sfloat)) {
if(!nonint.factors) {
# collect variables which need a warning
collected_warnings[["floatfact"]] <- c(collected_warnings[["floatfact"]], vnames[i])
next
}
}
# get unique values / omit NA
varunique <- unique(as.character(na.omit(data[, i])))
#check for duplicated labels
labcount <- table(names(labtable))
if(any(labcount > 1)) {
# collect variables which need a warning
collected_warnings[["dublifact"]] <- c(collected_warnings[["dublifact"]], vnames[i])
labdups <- names(labtable) %in% names(labcount[labcount > 1])
# generate unique labels from assigned label and code number
names(labtable)[labdups] <- paste0(names(labtable)[labdups],
"_(", labtable[labdups], ")")
}
# assign label if label set is complete
if (all(varunique %in% labtable)) {
data[, i] <- factor(data[, i], levels=labtable,
labels=names(labtable))
# else generate labels from codes
} else if (generate.factors) {
names(varunique) <- varunique
gen.lab <- sort(c(varunique[!varunique %in% labtable], labtable))
data[, i] <- factor(data[, i], levels=gen.lab,
labels=names(gen.lab))
# add generated labels to label.table
gen.lab.name <- paste0("gen_",vnames[i])
attr(data, "label.table")[[gen.lab.name]] <- gen.lab
attr(data, "val.labels")[i] <- gen.lab.name
} else {
# collect variables which need a warning
collected_warnings[["misslab"]] <- c(collected_warnings[["mislab"]],
vnames[i])
}
}
}
}
if (add.rownames) {
rownames(data) <- data[[1]]
data[[1]] <- NULL
}
## issue warnings
#dublifact
if(length(collected_warnings[["dublifact"]]) > 0) {
dublifactvars <- paste(collected_warnings[["dublifact"]], collapse = ", ")
warning(paste0("\n Duplicated factor levels for variables\n\n",
paste(strwrap(dublifactvars,
width = 0.6 * getOption("width"),
prefix = " "),
collapse = "\n"),
"\n\n Unique labels for these variables have been generated.\n"))
}
# floatfact
if(length(collected_warnings[["floatfact"]]) > 0) {
floatfactvars <- paste(collected_warnings[["floatfact"]], collapse = ", ")
warning(paste0("\n Factor codes of type double or float detected in variables\n\n",
paste(strwrap(floatfactvars,
width = 0.6 * getOption("width"),
prefix = " "),
collapse = "\n"),
"\n\n No labels have been assigned.",
"\n Set option 'nonint.factors = TRUE' to assign labels anyway.\n"))
}
# misslab
if(length(collected_warnings[["misslab"]]) > 0) {
misslabvars <- paste(collected_warnings[["misslab"]], collapse = ", ")
warning(paste0("\n Missing factor labels for variables\n\n",
paste(strwrap(misslabvars,
width = 0.6 * getOption("width"),
prefix = " "),
collapse = "\n"),
"\n\n No labels have been assigned.",
"\n Set option 'generate.factors=TRUE' to generate labels."))
}
# return data.frame
return(data)
}
|