1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
|
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Jan Marvin Garbuszus & Sebastian Jeworutzki" />
<meta name="date" content="2025-04-25" />
<title>readstata13: Basic Manual</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
html { -webkit-text-size-adjust: 100%; }
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; }
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.at { color: #7d9029; }
code span.bn { color: #40a070; }
code span.bu { color: #008000; }
code span.cf { color: #007020; font-weight: bold; }
code span.ch { color: #4070a0; }
code span.cn { color: #880000; }
code span.co { color: #60a0b0; font-style: italic; }
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.do { color: #ba2121; font-style: italic; }
code span.dt { color: #902000; }
code span.dv { color: #40a070; }
code span.er { color: #ff0000; font-weight: bold; }
code span.ex { }
code span.fl { color: #40a070; }
code span.fu { color: #06287e; }
code span.im { color: #008000; font-weight: bold; }
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
code span.kw { color: #007020; font-weight: bold; }
code span.op { color: #666666; }
code span.ot { color: #007020; }
code span.pp { color: #bc7a00; }
code span.sc { color: #4070a0; }
code span.ss { color: #bb6688; }
code span.st { color: #4070a0; }
code span.va { color: #19177c; }
code span.vs { color: #4070a0; }
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
var j = 0;
while (j < rules.length) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
j++;
continue;
}
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') {
j++;
continue;
}
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">readstata13: Basic Manual</h1>
<h4 class="author">Jan Marvin Garbuszus & Sebastian Jeworutzki</h4>
<h4 class="date">2025-04-25</h4>
<div id="TOC">
<ul>
<li><a href="#core-functionality-reading-and-writing-stata-files" id="toc-core-functionality-reading-and-writing-stata-files">Core
Functionality: Reading and Writing Stata files</a></li>
<li><a href="#supported-stata-versions" id="toc-supported-stata-versions">Supported Stata Versions</a></li>
<li><a href="#working-with-labelled-data" id="toc-working-with-labelled-data">Working with Labelled Data</a>
<ul>
<li><a href="#multi-language-support-for-labels" id="toc-multi-language-support-for-labels">Multi-Language Support for
Labels</a></li>
<li><a href="#compatibility-with-other-packages" id="toc-compatibility-with-other-packages">Compatibility with Other
Packages</a></li>
</ul></li>
<li><a href="#handling-large-datasets" id="toc-handling-large-datasets">Handling Large Datasets</a>
<ul>
<li><a href="#partial-reading" id="toc-partial-reading">Partial
Reading</a></li>
<li><a href="#compression" id="toc-compression">Compression</a></li>
</ul></li>
<li><a href="#advanced-features" id="toc-advanced-features">Advanced
Features</a>
<ul>
<li><a href="#frames" id="toc-frames">Frames</a></li>
<li><a href="#long-strings-strl-and-binary-data" id="toc-long-strings-strl-and-binary-data">Long Strings (strL) and
Binary Data</a></li>
</ul></li>
</ul>
</div>
<p>The <code>readstata13</code> package was developed to address
compatibility issues arising from changes in the Stata 13 dta file
format. Prior to Stata 13, packages like <code>foreign</code> could
handle dta files. However, Stata 13 introduced a new format that
resembles XML.<a href="#fn1" class="footnote-ref" id="fnref1"><sup>1</sup></a> Recognizing the need for a new solution, we
(Jan Marvin Garbuszus and Sebastian Jeworutzki) created
<code>readstata13</code>. Leveraging Rcpp for performance, the package
has evolved into a comprehensive tool for working with dta files in
R.</p>
<p>Key features of <code>readstata13</code> include:</p>
<ul>
<li><strong>Broad Format Support:</strong> Ability to import and export
dta files across a wide range of Stata versions, including many
undocumented formats.</li>
<li><strong>Handling Advanced Features:</strong> Support for features
like string encoding, multilingual labels, business calendars, long
strings (<code>strL</code>), frames, and embedded binary data.</li>
<li><strong>Enhanced Functionality:</strong> Built as a direct
replacement for <code>foreign</code>’s dta functions, with added
capabilities for improved label handling (including generation) and
partial data reading (selecting specific rows or variables).</li>
</ul>
<div id="core-functionality-reading-and-writing-stata-files" class="section level2">
<h2>Core Functionality: Reading and Writing Stata files</h2>
<p>Importing a Stata file using <code>readstata13</code> is
straightforward, similar to using the <code>foreign</code> package. The
primary function is <code>read.dta13</code>. To save an R data frame to
the Stata dta format, you use the <code>save.dta13</code> function.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">data</span> (cars)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a></span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a><span class="co"># Save the 'cars' dataset to a Stata file</span></span>
<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a><span class="fu">save.dta13</span>(cars, <span class="at">file =</span> <span class="st">"res/cars.dta"</span>)</span>
<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a></span>
<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a><span class="co"># Read the saved Stata file back into R</span></span>
<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a>dat <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="st">"res/cars.dta"</span>)</span></code></pre></div>
<p>Beyond the data itself, <code>readstata13</code> preserves important
metadata from the Stata file. This information is stored as attributes
of the imported data frame.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="co"># prints the attributes</span></span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="fu">attributes</span>(dat)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="co">#> $row.names</span></span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="co">#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25</span></span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="co">#> [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50</span></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="co">#> $names</span></span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#> [1] "speed" "dist" </span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="co">#> $class</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#> [1] "data.frame"</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a><span class="co">#> $datalabel</span></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="co">#> [1] "Written by R"</span></span>
<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a><span class="co">#> $time.stamp</span></span>
<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a><span class="co">#> [1] "25 Apr 2025 12:18"</span></span>
<span id="cb2-18"><a href="#cb2-18" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-19"><a href="#cb2-19" tabindex="-1"></a><span class="co">#> $formats</span></span>
<span id="cb2-20"><a href="#cb2-20" tabindex="-1"></a><span class="co">#> [1] "%9.0g" "%9.0g"</span></span>
<span id="cb2-21"><a href="#cb2-21" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-22"><a href="#cb2-22" tabindex="-1"></a><span class="co">#> $types</span></span>
<span id="cb2-23"><a href="#cb2-23" tabindex="-1"></a><span class="co">#> [1] 65526 65526</span></span>
<span id="cb2-24"><a href="#cb2-24" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-25"><a href="#cb2-25" tabindex="-1"></a><span class="co">#> $val.labels</span></span>
<span id="cb2-26"><a href="#cb2-26" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-27"><a href="#cb2-27" tabindex="-1"></a><span class="co">#> "" "" </span></span>
<span id="cb2-28"><a href="#cb2-28" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-29"><a href="#cb2-29" tabindex="-1"></a><span class="co">#> $var.labels</span></span>
<span id="cb2-30"><a href="#cb2-30" tabindex="-1"></a><span class="co">#> [1] "" ""</span></span>
<span id="cb2-31"><a href="#cb2-31" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-32"><a href="#cb2-32" tabindex="-1"></a><span class="co">#> $version</span></span>
<span id="cb2-33"><a href="#cb2-33" tabindex="-1"></a><span class="co">#> [1] 117</span></span>
<span id="cb2-34"><a href="#cb2-34" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-35"><a href="#cb2-35" tabindex="-1"></a><span class="co">#> $label.table</span></span>
<span id="cb2-36"><a href="#cb2-36" tabindex="-1"></a><span class="co">#> list()</span></span>
<span id="cb2-37"><a href="#cb2-37" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-38"><a href="#cb2-38" tabindex="-1"></a><span class="co">#> $expansion.fields</span></span>
<span id="cb2-39"><a href="#cb2-39" tabindex="-1"></a><span class="co">#> list()</span></span>
<span id="cb2-40"><a href="#cb2-40" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-41"><a href="#cb2-41" tabindex="-1"></a><span class="co">#> $byteorder</span></span>
<span id="cb2-42"><a href="#cb2-42" tabindex="-1"></a><span class="co">#> [1] "LSF"</span></span>
<span id="cb2-43"><a href="#cb2-43" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-44"><a href="#cb2-44" tabindex="-1"></a><span class="co">#> $orig.dim</span></span>
<span id="cb2-45"><a href="#cb2-45" tabindex="-1"></a><span class="co">#> [1] 50 2</span></span>
<span id="cb2-46"><a href="#cb2-46" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb2-47"><a href="#cb2-47" tabindex="-1"></a><span class="co">#> $data.label</span></span>
<span id="cb2-48"><a href="#cb2-48" tabindex="-1"></a><span class="co">#> character(0)</span></span></code></pre></div>
<p>Examining the attributes reveals details such as the Stata format
version (e.g., format 117, introduced in Stata 13), a data label, a
timestamp, and information about the data types and formats used in
Stata. In this example, the <code>save.dta13</code> function wrote the
numeric data from R as binary <code>double</code>s in the dta file. The
byte order (endianness) is also recorded; <code>readstata13</code> is
designed to handle both Little Endian (used here) and Big Endian formats
during reading and writing.<a href="#fn2" class="footnote-ref" id="fnref2"><sup>2</sup></a></p>
<p>The package automatically manages the conversion of Stata’s missing
values, value labels, and variable labels during both import and
export.</p>
</div>
<div id="supported-stata-versions" class="section level2">
<h2>Supported Stata Versions</h2>
<p>A key advantage of <code>readstata13</code> is its ability to write
dta files compatible with older and newer versions of Stata. This is
controlled using the <code>version</code> argument in the
<code>save.dta13</code> function. The table below lists supported Stata
versions and their corresponding file formats:</p>
<table>
<thead>
<tr class="header">
<th>Stata Version</th>
<th>File Format</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>18 - 19</td>
<td>121</td>
</tr>
<tr class="even">
<td>18 - 19</td>
<td>120</td>
</tr>
<tr class="odd">
<td>15 - 19</td>
<td>119</td>
</tr>
<tr class="even">
<td>14 - 19</td>
<td>118</td>
</tr>
<tr class="odd">
<td>13</td>
<td>117</td>
</tr>
<tr class="even">
<td>12</td>
<td>115</td>
</tr>
<tr class="odd">
<td>10 - 11</td>
<td>114</td>
</tr>
<tr class="even">
<td>8 - 9</td>
<td>113</td>
</tr>
<tr class="odd">
<td>7</td>
<td>110</td>
</tr>
<tr class="even">
<td>6</td>
<td>108</td>
</tr>
</tbody>
</table>
<p>While this table shows the most common formats,
<code>readstata13</code> supports reading files from Stata version 1
(format 102) up to the latest format 121 (used for files with over
32,767 variables, readable by Stata 18 & 19 MP).<a href="#fn3" class="footnote-ref" id="fnref3"><sup>3</sup></a> The dta format has
evolved over time to accommodate larger datasets and longer variable
names or labels. Although <code>readstata13</code> can read virtually
any format, its ability to write files that <em>fit</em> within Stata’s
historical limits depends on the data size. For general compatibility,
it’s recommended to target versions 7 or later (formats 110+), which
aligns with the default in <code>foreign::write.dta</code>.</p>
<p>Here’s an example of saving a file compatible with Stata 7:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="co"># Save the cars dataset as a Stata 7 dta file</span></span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">save.dta13</span>(cars, <span class="st">"res/cars_version.dta"</span>, <span class="at">version =</span> <span class="dv">7</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a></span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co"># Read the file back and check its reported version</span></span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a>dat3 <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="st">"res/cars_version.dta"</span>)</span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="fu">attr</span>(dat3, <span class="st">"version"</span>)</span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="co">#> [1] 110</span></span></code></pre></div>
</div>
<div id="working-with-labelled-data" class="section level2">
<h2>Working with Labelled Data</h2>
<p>Stata datasets often include rich metadata like variable and value
labels. Since base R data frames don’t natively support this,
<code>readstata13</code> stores this information in various attributes
of the imported data frame, mirroring the approach used by
<code>foreign::read.dta</code>.</p>
<p>Let’s use the example dataset “statacar.dta” included with the
<code>readstata13</code> package. We’ll initially import it without
converting categorical data to R factors, keeping the original numeric
codes.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">library</span>(readstata13)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>x <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="fu">system.file</span>(<span class="st">"extdata/statacar.dta"</span>, </span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a> <span class="at">package =</span> <span class="st">"readstata13"</span>),</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a> <span class="at">convert.factors =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<p>Variable labels are accessible via the <code>var.labels</code>
attribute:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">attr</span>(x, <span class="st">"var.labels"</span>)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#> [1] "Numeric ID" "Brand of car" "Car model" </span></span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#> [4] "Car classification" "Horse Power" "Maximum speed" </span></span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#> [7] "" "" "Launch date" </span></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#> [10] "Launch date (calendar)" ""</span></span></code></pre></div>
<p>You can retrieve the label for a specific variable using the
<code>varlabel()</code> function:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">varlabel</span>(x, <span class="at">var.name =</span> <span class="st">"type"</span>)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="co">#> type </span></span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> "Car classification"</span></span></code></pre></div>
<p>Value labels, which map numeric codes to descriptive text, are stored
in a more structured way. The <code>val.labels</code> attribute
indicates which variables have associated value labels. The actual label
definitions (the mapping from codes to labels) are stored as a list in
the <code>label.table</code> attribute.</p>
<p>In our example dataset, only one column has value labels:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">attr</span>(x, <span class="st">"val.labels"</span>)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#> type_en </span></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> "" "" "" "type_en" "" "" "" "" </span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> "" "" ""</span></span></code></pre></div>
<p>The corresponding label table for the ‘type’ variable is named
<code>type_en</code>. It’s a named vector where the numeric codes are
the vector values and the labels are the names:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">attr</span>(x, <span class="st">"label.table"</span>)<span class="sc">$</span>type_en</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co">#> min Off-Road Roadster City car Family car max </span></span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a><span class="co">#> -2147483647 1 2 3 4 2147483620</span></span></code></pre></div>
<p>Convenience functions like <code>get.label.name()</code> and
<code>get.label()</code> provide alternative ways to access this
information:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="fu">get.label.name</span>(x, <span class="at">var.name =</span> <span class="st">"type"</span>)</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a><span class="co">#> type </span></span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a><span class="co">#> "type_en"</span></span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a><span class="fu">get.label</span>(x, <span class="st">"type_en"</span>)</span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a><span class="co">#> min Off-Road Roadster City car Family car max </span></span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a><span class="co">#> -2147483647 1 2 3 4 2147483620</span></span></code></pre></div>
<p>A common task is converting a numeric variable with value labels into
an R factor. <code>readstata13</code> simplifies this with the
<code>set.label()</code> function, which uses the stored label
information to create the factor levels.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="co"># Create a factor variable 'type_en' from the 'type' variable using stored labels</span></span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>x<span class="sc">$</span>type_en <span class="ot"><-</span> <span class="fu">set.label</span>(x, <span class="st">"type"</span>)</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a></span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a><span class="co"># Display the original numeric column and the new factor column</span></span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a>x[, <span class="fu">c</span>(<span class="st">"type"</span>, <span class="st">"type_en"</span>)]</span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#> type type_en</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#> 1 2 Roadster</span></span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#> 2 4 Family car</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#> 3 3 City car</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#> 4 4 Family car</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#> 5 1 Off-Road</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#> 6 3 City car</span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a><span class="co">#> 7 2147483620 max</span></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a><span class="co">#> 8 -2147483647 min</span></span></code></pre></div>
<div id="multi-language-support-for-labels" class="section level3">
<h3>Multi-Language Support for Labels</h3>
<p>Stata allows datasets to include labels in multiple languages.
<code>readstata13</code> supports this, and the <code>lang</code> option
in <code>set.label()</code> lets you specify which language’s labels to
use when creating a factor.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="co"># Check available languages and the default language</span></span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a><span class="fu">get.lang</span>(x)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a><span class="co">#> Available languages:</span></span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a><span class="co">#> en</span></span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#> de</span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#> Default language:</span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#> en</span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a></span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co"># Create a factor using the German labels</span></span>
<span id="cb11-11"><a href="#cb11-11" tabindex="-1"></a>x<span class="sc">$</span>type_de <span class="ot"><-</span> <span class="fu">set.label</span>(x, <span class="st">"type"</span>, <span class="at">lang =</span> <span class="st">"de"</span>)</span>
<span id="cb11-12"><a href="#cb11-12" tabindex="-1"></a></span>
<span id="cb11-13"><a href="#cb11-13" tabindex="-1"></a><span class="co"># Display the original and both language factor columns</span></span>
<span id="cb11-14"><a href="#cb11-14" tabindex="-1"></a>x[, <span class="fu">c</span>(<span class="st">"type"</span>, <span class="st">"type_en"</span>, <span class="st">"type_de"</span>)]</span>
<span id="cb11-15"><a href="#cb11-15" tabindex="-1"></a><span class="co">#> type type_en type_de</span></span>
<span id="cb11-16"><a href="#cb11-16" tabindex="-1"></a><span class="co">#> 1 2 Roadster Sportwagen</span></span>
<span id="cb11-17"><a href="#cb11-17" tabindex="-1"></a><span class="co">#> 2 4 Family car Familienauto</span></span>
<span id="cb11-18"><a href="#cb11-18" tabindex="-1"></a><span class="co">#> 3 3 City car Stadtauto</span></span>
<span id="cb11-19"><a href="#cb11-19" tabindex="-1"></a><span class="co">#> 4 4 Family car Familienauto</span></span>
<span id="cb11-20"><a href="#cb11-20" tabindex="-1"></a><span class="co">#> 5 1 Off-Road Geländewagen</span></span>
<span id="cb11-21"><a href="#cb11-21" tabindex="-1"></a><span class="co">#> 6 3 City car Stadtauto</span></span>
<span id="cb11-22"><a href="#cb11-22" tabindex="-1"></a><span class="co">#> 7 2147483620 max max</span></span>
<span id="cb11-23"><a href="#cb11-23" tabindex="-1"></a><span class="co">#> 8 -2147483647 min min</span></span></code></pre></div>
</div>
<div id="compatibility-with-other-packages" class="section level3">
<h3>Compatibility with Other Packages</h3>
<p><code>readstata13</code> is designed to integrate well with other R
packages that work with labelled data, such as <code>labelled</code> and
<code>expss</code>.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a><span class="co"># Requires labelled package version > 2.8.0 due to a past bug</span></span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a><span class="fu">library</span>(labelled)</span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a></span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a><span class="co"># Read the data and convert to the 'labelled' class format</span></span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a>xl <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="fu">system.file</span>(<span class="st">"extdata/statacar.dta"</span>, </span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a> <span class="at">package =</span> <span class="st">"readstata13"</span>),</span>
<span id="cb12-7"><a href="#cb12-7" tabindex="-1"></a> <span class="at">convert.factors =</span> <span class="cn">FALSE</span>)</span>
<span id="cb12-8"><a href="#cb12-8" tabindex="-1"></a></span>
<span id="cb12-9"><a href="#cb12-9" tabindex="-1"></a>xl <span class="ot"><-</span> <span class="fu">to_labelled</span>(xl)</span>
<span id="cb12-10"><a href="#cb12-10" tabindex="-1"></a>xl</span>
<span id="cb12-11"><a href="#cb12-11" tabindex="-1"></a><span class="co">#> # A tibble: 8 × 11</span></span>
<span id="cb12-12"><a href="#cb12-12" tabindex="-1"></a><span class="co">#> id brand model type hp max mileage ecar ldate ldatecal </span></span>
<span id="cb12-13"><a href="#cb12-13" tabindex="-1"></a><span class="co">#> * <int> <chr> <chr> <int> <int> <dbl> <dbl> <int> <int> <date> </span></span>
<span id="cb12-14"><a href="#cb12-14" tabindex="-1"></a><span class="co">#> 1 1 Meyer Spee… 2 e0 150 1.77e 2 1.02e 1 0 1 2001-01-03</span></span>
<span id="cb12-15"><a href="#cb12-15" tabindex="-1"></a><span class="co">#> 2 2 Meyer Happ… 4 e0 98 1.45e 2 5.60e 0 0 247 2001-12-31</span></span>
<span id="cb12-16"><a href="#cb12-16" tabindex="-1"></a><span class="co">#> 3 3 Akiko Susu… 3 e0 45 1.19e 2 NA 0 14 2001-01-23</span></span>
<span id="cb12-17"><a href="#cb12-17" tabindex="-1"></a><span class="co">#> 4 4 Akiko Susu… 4 e0 80 1.27e 2 6.80e 0 0 134 2001-07-16</span></span>
<span id="cb12-18"><a href="#cb12-18" tabindex="-1"></a><span class="co">#> 5 5 Hutch Lumb… 1 e0 180 1.56e 2 1.42e 1 0 110 2001-06-11</span></span>
<span id="cb12-19"><a href="#cb12-19" tabindex="-1"></a><span class="co">#> 6 6 Erikson E-Ca… 3 e0 NA NA NA 1 100 2001-05-25</span></span>
<span id="cb12-20"><a href="#cb12-20" tabindex="-1"></a><span class="co">#> 7 7 Erikson Maxi… 2.15e9 32740 8.99e307 1.70e38 100 19 2001-01-30</span></span>
<span id="cb12-21"><a href="#cb12-21" tabindex="-1"></a><span class="co">#> 8 7 Erikson Mimi… -2.15e9 -32767 -Inf -1.70e38 -127 1 2001-01-03</span></span>
<span id="cb12-22"><a href="#cb12-22" tabindex="-1"></a><span class="co">#> # ℹ 1 more variable: modelStrL <chr></span></span></code></pre></div>
<p>Packages like <code>expss</code> can utilize the label information
stored by <code>readstata13</code> (and converted by
<code>labelled</code>) for creating descriptive tables and plots.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">library</span>(expss)</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a><span class="co">#> Loading required package: maditr</span></span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a><span class="co">#> To aggregate data: take(mtcars, mean_mpg = mean(mpg), by = am)</span></span>
<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a><span class="co">#> Use 'expss_output_rnotebook()' to display tables inside R Notebooks.</span></span>
<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="co">#> To return to the console output, use 'expss_output_default()'.</span></span>
<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#> Attaching package: 'expss'</span></span>
<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#> The following object is masked from 'package:labelled':</span></span>
<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#> is.labelled</span></span>
<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a></span>
<span id="cb13-14"><a href="#cb13-14" tabindex="-1"></a><span class="co"># Example: Use expss to create a table summarizing horse power by car brand</span></span>
<span id="cb13-15"><a href="#cb13-15" tabindex="-1"></a><span class="co"># First, handle missing or negative HP values</span></span>
<span id="cb13-16"><a href="#cb13-16" tabindex="-1"></a>xl[xl<span class="sc">$</span>hp <span class="sc"><</span> <span class="dv">0</span> <span class="sc">|</span> <span class="fu">is.na</span>(xl<span class="sc">$</span>hp), <span class="st">"hp"</span>] <span class="ot"><-</span> <span class="cn">NA</span></span>
<span id="cb13-17"><a href="#cb13-17" tabindex="-1"></a></span>
<span id="cb13-18"><a href="#cb13-18" tabindex="-1"></a><span class="co"># Create the table using expss piping syntax</span></span>
<span id="cb13-19"><a href="#cb13-19" tabindex="-1"></a>xl <span class="sc">%>%</span></span>
<span id="cb13-20"><a href="#cb13-20" tabindex="-1"></a> <span class="fu">tab_cells</span>(hp) <span class="sc">%>%</span> <span class="co"># Specify the variable for cells</span></span>
<span id="cb13-21"><a href="#cb13-21" tabindex="-1"></a> <span class="fu">tab_cols</span>(brand) <span class="sc">%>%</span> <span class="co"># Specify the variable for columns</span></span>
<span id="cb13-22"><a href="#cb13-22" tabindex="-1"></a> <span class="fu">tab_stat_mean_sd_n</span>() <span class="sc">%>%</span> <span class="co"># Calculate mean, standard deviation, and N</span></span>
<span id="cb13-23"><a href="#cb13-23" tabindex="-1"></a> <span class="fu">tab_pivot</span>() <span class="sc">%>%</span> <span class="co"># Pivot the table</span></span>
<span id="cb13-24"><a href="#cb13-24" tabindex="-1"></a> <span class="fu">set_caption</span>(<span class="st">"Horse power by car brand."</span>) <span class="co"># Add a caption</span></span></code></pre></div>
<table class="gmisc_table" style="border-collapse: collapse; margin-top: 1em; margin-bottom: 1em;">
<thead>
<tr>
<td colspan="5" style="text-align: left;">
Horse power by car brand.
</td>
</tr>
<tr>
<th style="border-top: 2px solid grey;">
</th>
<th colspan="4" style="font-weight: 900; border-bottom: 1px solid grey; border-top: 2px solid grey; text-align: center;">
Brand of car
</th>
</tr>
<tr>
<th style="border-bottom: 1px solid grey; font-weight: 900; text-align: center;">
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
Akiko
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
Erikson
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
Hutch
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
Meyer
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="5" style="font-weight: 900;">
Horse Power
</td>
</tr>
<tr>
<td style="text-align: left;">
Mean
</td>
<td style="text-align: right;">
62.5
</td>
<td style="text-align: right;">
32740
</td>
<td style="text-align: right;">
180
</td>
<td style="text-align: right;">
124.0
</td>
</tr>
<tr>
<td style="text-align: left;">
Std. dev.
</td>
<td style="text-align: right;">
24.7
</td>
<td style="text-align: right;">
</td>
<td style="text-align: right;">
</td>
<td style="text-align: right;">
36.8
</td>
</tr>
<tr>
<td style="border-bottom: 2px solid grey; text-align: left;">
Unw. valid N
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
2.0
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
1
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
1
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
2.0
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="handling-large-datasets" class="section level2">
<h2>Handling Large Datasets</h2>
<p>As datasets grow, importing and managing them in memory can become
challenging. <code>readstata13</code> provides features to work
efficiently with large dta files.</p>
<div id="partial-reading" class="section level3">
<h3>Partial Reading</h3>
<p>To avoid loading an entire large dataset when only a subset is
needed, <code>readstata13</code> allows you to read specific rows or
columns. This is particularly useful for exploring large files or
extracting key variables without consuming excessive memory or time.</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a><span class="co"># Read only the first 3 rows of the dataset</span></span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>dat_1 <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="st">"res/cars.dta"</span>, <span class="at">select.rows =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">3</span>)); dat_1</span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a><span class="co">#> speed dist</span></span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a><span class="co">#> 1 4 2</span></span>
<span id="cb14-5"><a href="#cb14-5" tabindex="-1"></a><span class="co">#> 2 4 10</span></span>
<span id="cb14-6"><a href="#cb14-6" tabindex="-1"></a><span class="co">#> 3 7 4</span></span>
<span id="cb14-7"><a href="#cb14-7" tabindex="-1"></a></span>
<span id="cb14-8"><a href="#cb14-8" tabindex="-1"></a><span class="co"># Read only the 'dist' variable from the dataset</span></span>
<span id="cb14-9"><a href="#cb14-9" tabindex="-1"></a>dat_2 <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="st">"res/cars.dta"</span>, <span class="at">select.cols =</span> <span class="st">"dist"</span>); <span class="fu">head</span>(dat_2)</span>
<span id="cb14-10"><a href="#cb14-10" tabindex="-1"></a><span class="co">#> dist</span></span>
<span id="cb14-11"><a href="#cb14-11" tabindex="-1"></a><span class="co">#> 1 2</span></span>
<span id="cb14-12"><a href="#cb14-12" tabindex="-1"></a><span class="co">#> 2 10</span></span>
<span id="cb14-13"><a href="#cb14-13" tabindex="-1"></a><span class="co">#> 3 4</span></span>
<span id="cb14-14"><a href="#cb14-14" tabindex="-1"></a><span class="co">#> 4 22</span></span>
<span id="cb14-15"><a href="#cb14-15" tabindex="-1"></a><span class="co">#> 5 16</span></span>
<span id="cb14-16"><a href="#cb14-16" tabindex="-1"></a><span class="co">#> 6 10</span></span></code></pre></div>
<p>A practical application of partial reading is working with large
survey datasets like the SOEP (German Socio-Economic Panel).<a href="#fn4" class="footnote-ref" id="fnref4"><sup>4</sup></a> These
datasets are often distributed across multiple files, structured like
tables in a database. To link information across files, you need key
identifier variables. Instead of importing entire multi-gigabyte files
just to get a few ID columns, you can use <code>select.cols</code> to
quickly and efficiently read only the necessary variables.</p>
</div>
<div id="compression" class="section level3">
<h3>Compression</h3>
<p>When saving data to a dta file, you can use the
<code>compress = TRUE</code> option in <code>save.dta13</code>. This
instructs the package to use the smallest possible Stata data type for
each variable, potentially reducing the file size.</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a><span class="co"># Save the cars dataset with compression enabled</span></span>
<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a><span class="fu">save.dta13</span>(cars, <span class="at">file =</span> <span class="st">"res/cars_compress.dta"</span>, <span class="at">compress =</span> <span class="cn">TRUE</span>)</span>
<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a></span>
<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a><span class="co"># Import the compressed file and check the resulting data types</span></span>
<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a>dat2 <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="at">file =</span> <span class="st">"res/cars_compress.dta"</span>)</span>
<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a><span class="fu">attr</span>(dat2, <span class="st">"types"</span>)</span>
<span id="cb15-7"><a href="#cb15-7" tabindex="-1"></a><span class="co">#> [1] 65530 65529</span></span></code></pre></div>
<p>In this example, the <code>numeric</code> vector in R was safely
stored as an <code>integer</code> in the compressed dta file because its
values fit within the integer range. The main benefit of compression is
the reduction in file size. The only notable change is that after
re-import, the former <code>numeric</code> column has become an
<code>integer</code>.</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a><span class="fu">rbind</span>(<span class="fu">file.info</span>(<span class="st">"res/cars.dta"</span>)[<span class="st">"size"</span>],</span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a> <span class="fu">file.info</span>(<span class="st">"res/cars_compress.dta"</span>)[<span class="st">"size"</span>])</span>
<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a><span class="co">#> size</span></span>
<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a><span class="co">#> res/cars.dta 1762</span></span>
<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a><span class="co">#> res/cars_compress.dta 1112</span></span></code></pre></div>
</div>
</div>
<div id="advanced-features" class="section level2">
<h2>Advanced Features</h2>
<div id="frames" class="section level3">
<h3>Frames</h3>
<p>Stata version 16 introduced the concept of data <a href="https://www.stata.com/help.cgi?frames">frames</a>, allowing
multiple datasets to be held in memory simultaneously and saved together
in a “.dtas” file (a Stata frameset). A “.dtas” file is essentially a
zip archive containing a separate dta file for each frame.</p>
<p>The <code>get.frames</code> function in <code>readstata13</code> can
inspect a “.dtas” file and list the names (defined within Stata), the
internal filename and version of the frames it contains:</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>dtas_path <span class="ot"><-</span> <span class="fu">system.file</span>(<span class="st">"extdata"</span>, <span class="st">"myproject2.dtas"</span>,</span>
<span id="cb17-2"><a href="#cb17-2" tabindex="-1"></a> <span class="at">package=</span><span class="st">"readstata13"</span>)</span>
<span id="cb17-3"><a href="#cb17-3" tabindex="-1"></a></span>
<span id="cb17-4"><a href="#cb17-4" tabindex="-1"></a><span class="co"># Get information about frames in the .dtas file</span></span>
<span id="cb17-5"><a href="#cb17-5" tabindex="-1"></a><span class="fu">get.frames</span>(dtas_path)</span>
<span id="cb17-6"><a href="#cb17-6" tabindex="-1"></a><span class="co">#> name filename version</span></span>
<span id="cb17-7"><a href="#cb17-7" tabindex="-1"></a><span class="co">#> 1 persons persons~0000 120</span></span>
<span id="cb17-8"><a href="#cb17-8" tabindex="-1"></a><span class="co">#> 2 counties counties~0001 118</span></span></code></pre></div>
<p>To import data from a “.dtas” file, use <code>read.dtas</code>. By
default, it imports all frames and returns them as a named list of R
data frames.</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a><span class="co"># Read all frames from the .dtas file</span></span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a><span class="fu">read.dtas</span>(dtas_path)</span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co">#> Warning in stata_read(filepath, missing.type, select.rows, select.cols_chr, :</span></span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a><span class="co">#> File contains unhandled alias variable in column: 5</span></span>
<span id="cb18-5"><a href="#cb18-5" tabindex="-1"></a><span class="co">#> $persons</span></span>
<span id="cb18-6"><a href="#cb18-6" tabindex="-1"></a><span class="co">#> personid countyid income counties median ratio</span></span>
<span id="cb18-7"><a href="#cb18-7" tabindex="-1"></a><span class="co">#> 1 1 5 30818 5 0.7038001</span></span>
<span id="cb18-8"><a href="#cb18-8" tabindex="-1"></a><span class="co">#> 2 2 3 30752 3 0.4225046</span></span>
<span id="cb18-9"><a href="#cb18-9" tabindex="-1"></a><span class="co">#> 3 3 2 29673 2 0.5230381</span></span>
<span id="cb18-10"><a href="#cb18-10" tabindex="-1"></a><span class="co">#> 4 4 3 32115 3 0.4412310</span></span>
<span id="cb18-11"><a href="#cb18-11" tabindex="-1"></a><span class="co">#> 5 5 2 31189 2 0.5497603</span></span>
<span id="cb18-12"><a href="#cb18-12" tabindex="-1"></a><span class="co">#> 6 6 1 30992 1 0.6725256</span></span>
<span id="cb18-13"><a href="#cb18-13" tabindex="-1"></a><span class="co">#> 7 7 3 34328 3 0.4716356</span></span>
<span id="cb18-14"><a href="#cb18-14" tabindex="-1"></a><span class="co">#> 8 8 3 31508 3 0.4328914</span></span>
<span id="cb18-15"><a href="#cb18-15" tabindex="-1"></a><span class="co">#> 9 9 5 26071 5 0.5953915</span></span>
<span id="cb18-16"><a href="#cb18-16" tabindex="-1"></a><span class="co">#> 10 10 5 29768 5 0.6798210</span></span>
<span id="cb18-17"><a href="#cb18-17" tabindex="-1"></a><span class="co">#> 11 11 2 34757 2 0.6126525</span></span>
<span id="cb18-18"><a href="#cb18-18" tabindex="-1"></a><span class="co">#> 12 12 3 25630 3 0.3521330</span></span>
<span id="cb18-19"><a href="#cb18-19" tabindex="-1"></a><span class="co">#> 13 13 1 29146 1 0.6324675</span></span>
<span id="cb18-20"><a href="#cb18-20" tabindex="-1"></a><span class="co">#> 14 14 5 25752 5 0.5881063</span></span>
<span id="cb18-21"><a href="#cb18-21" tabindex="-1"></a><span class="co">#> 15 15 1 26806 1 0.5816895</span></span>
<span id="cb18-22"><a href="#cb18-22" tabindex="-1"></a><span class="co">#> 16 16 2 34368 2 0.6057957</span></span>
<span id="cb18-23"><a href="#cb18-23" tabindex="-1"></a><span class="co">#> 17 17 3 26914 3 0.3697740</span></span>
<span id="cb18-24"><a href="#cb18-24" tabindex="-1"></a><span class="co">#> 18 18 2 25886 2 0.4562857</span></span>
<span id="cb18-25"><a href="#cb18-25" tabindex="-1"></a><span class="co">#> 19 19 1 29321 1 0.6362650</span></span>
<span id="cb18-26"><a href="#cb18-26" tabindex="-1"></a><span class="co">#> 20 20 5 29571 5 0.6753220</span></span>
<span id="cb18-27"><a href="#cb18-27" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb18-28"><a href="#cb18-28" tabindex="-1"></a><span class="co">#> $counties</span></span>
<span id="cb18-29"><a href="#cb18-29" tabindex="-1"></a><span class="co">#> countyid median_income</span></span>
<span id="cb18-30"><a href="#cb18-30" tabindex="-1"></a><span class="co">#> 1 Brazos 46083</span></span>
<span id="cb18-31"><a href="#cb18-31" tabindex="-1"></a><span class="co">#> 2 Dallas 56732</span></span>
<span id="cb18-32"><a href="#cb18-32" tabindex="-1"></a><span class="co">#> 3 Travis 72785</span></span>
<span id="cb18-33"><a href="#cb18-33" tabindex="-1"></a><span class="co">#> 4 Harris 58664</span></span>
<span id="cb18-34"><a href="#cb18-34" tabindex="-1"></a><span class="co">#> 5 Potter 43788</span></span>
<span id="cb18-35"><a href="#cb18-35" tabindex="-1"></a><span class="co">#> 6 El Paso 44120</span></span>
<span id="cb18-36"><a href="#cb18-36" tabindex="-1"></a><span class="co">#> 7 Bowie 49153</span></span>
<span id="cb18-37"><a href="#cb18-37" tabindex="-1"></a><span class="co">#> 8 Galveston 69674</span></span></code></pre></div>
<p>You can import only specific frames using the
<code>select.frames</code> argument:</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a><span class="co"># Read only the "counties" frame</span></span>
<span id="cb19-2"><a href="#cb19-2" tabindex="-1"></a><span class="fu">read.dtas</span>(dtas_path, <span class="at">select.frames =</span> <span class="st">"counties"</span>)</span>
<span id="cb19-3"><a href="#cb19-3" tabindex="-1"></a><span class="co">#> $counties</span></span>
<span id="cb19-4"><a href="#cb19-4" tabindex="-1"></a><span class="co">#> countyid median_income</span></span>
<span id="cb19-5"><a href="#cb19-5" tabindex="-1"></a><span class="co">#> 1 Brazos 46083</span></span>
<span id="cb19-6"><a href="#cb19-6" tabindex="-1"></a><span class="co">#> 2 Dallas 56732</span></span>
<span id="cb19-7"><a href="#cb19-7" tabindex="-1"></a><span class="co">#> 3 Travis 72785</span></span>
<span id="cb19-8"><a href="#cb19-8" tabindex="-1"></a><span class="co">#> 4 Harris 58664</span></span>
<span id="cb19-9"><a href="#cb19-9" tabindex="-1"></a><span class="co">#> 5 Potter 43788</span></span>
<span id="cb19-10"><a href="#cb19-10" tabindex="-1"></a><span class="co">#> 6 El Paso 44120</span></span>
<span id="cb19-11"><a href="#cb19-11" tabindex="-1"></a><span class="co">#> 7 Bowie 49153</span></span>
<span id="cb19-12"><a href="#cb19-12" tabindex="-1"></a><span class="co">#> 8 Galveston 69674</span></span></code></pre></div>
<p>Furthermore, you can apply specific <code>read.dta13</code> options
to individual frames within the “.dtas” file by providing a list to the
<code>read.dta13.options</code> argument. The list structure should be
<code>list(framename = list(param = value))</code>.</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a><span class="co"># Read frames with different column selections for each</span></span>
<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a><span class="fu">read.dtas</span>(dtas_path,</span>
<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a> <span class="at">read.dta13.options =</span> <span class="fu">list</span>(<span class="at">counties =</span> <span class="fu">list</span>(<span class="at">select.cols =</span> <span class="st">"median_income"</span>),</span>
<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a> <span class="at">persons =</span> <span class="fu">list</span>(<span class="at">select.cols =</span> <span class="st">"income"</span>)))</span>
<span id="cb20-5"><a href="#cb20-5" tabindex="-1"></a><span class="co">#> $persons</span></span>
<span id="cb20-6"><a href="#cb20-6" tabindex="-1"></a><span class="co">#> income</span></span>
<span id="cb20-7"><a href="#cb20-7" tabindex="-1"></a><span class="co">#> 1 30818</span></span>
<span id="cb20-8"><a href="#cb20-8" tabindex="-1"></a><span class="co">#> 2 30752</span></span>
<span id="cb20-9"><a href="#cb20-9" tabindex="-1"></a><span class="co">#> 3 29673</span></span>
<span id="cb20-10"><a href="#cb20-10" tabindex="-1"></a><span class="co">#> 4 32115</span></span>
<span id="cb20-11"><a href="#cb20-11" tabindex="-1"></a><span class="co">#> 5 31189</span></span>
<span id="cb20-12"><a href="#cb20-12" tabindex="-1"></a><span class="co">#> 6 30992</span></span>
<span id="cb20-13"><a href="#cb20-13" tabindex="-1"></a><span class="co">#> 7 34328</span></span>
<span id="cb20-14"><a href="#cb20-14" tabindex="-1"></a><span class="co">#> 8 31508</span></span>
<span id="cb20-15"><a href="#cb20-15" tabindex="-1"></a><span class="co">#> 9 26071</span></span>
<span id="cb20-16"><a href="#cb20-16" tabindex="-1"></a><span class="co">#> 10 29768</span></span>
<span id="cb20-17"><a href="#cb20-17" tabindex="-1"></a><span class="co">#> 11 34757</span></span>
<span id="cb20-18"><a href="#cb20-18" tabindex="-1"></a><span class="co">#> 12 25630</span></span>
<span id="cb20-19"><a href="#cb20-19" tabindex="-1"></a><span class="co">#> 13 29146</span></span>
<span id="cb20-20"><a href="#cb20-20" tabindex="-1"></a><span class="co">#> 14 25752</span></span>
<span id="cb20-21"><a href="#cb20-21" tabindex="-1"></a><span class="co">#> 15 26806</span></span>
<span id="cb20-22"><a href="#cb20-22" tabindex="-1"></a><span class="co">#> 16 34368</span></span>
<span id="cb20-23"><a href="#cb20-23" tabindex="-1"></a><span class="co">#> 17 26914</span></span>
<span id="cb20-24"><a href="#cb20-24" tabindex="-1"></a><span class="co">#> 18 25886</span></span>
<span id="cb20-25"><a href="#cb20-25" tabindex="-1"></a><span class="co">#> 19 29321</span></span>
<span id="cb20-26"><a href="#cb20-26" tabindex="-1"></a><span class="co">#> 20 29571</span></span>
<span id="cb20-27"><a href="#cb20-27" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb20-28"><a href="#cb20-28" tabindex="-1"></a><span class="co">#> $counties</span></span>
<span id="cb20-29"><a href="#cb20-29" tabindex="-1"></a><span class="co">#> median_income</span></span>
<span id="cb20-30"><a href="#cb20-30" tabindex="-1"></a><span class="co">#> 1 46083</span></span>
<span id="cb20-31"><a href="#cb20-31" tabindex="-1"></a><span class="co">#> 2 56732</span></span>
<span id="cb20-32"><a href="#cb20-32" tabindex="-1"></a><span class="co">#> 3 72785</span></span>
<span id="cb20-33"><a href="#cb20-33" tabindex="-1"></a><span class="co">#> 4 58664</span></span>
<span id="cb20-34"><a href="#cb20-34" tabindex="-1"></a><span class="co">#> 5 43788</span></span>
<span id="cb20-35"><a href="#cb20-35" tabindex="-1"></a><span class="co">#> 6 44120</span></span>
<span id="cb20-36"><a href="#cb20-36" tabindex="-1"></a><span class="co">#> 7 49153</span></span>
<span id="cb20-37"><a href="#cb20-37" tabindex="-1"></a><span class="co">#> 8 69674</span></span></code></pre></div>
</div>
<div id="long-strings-strl-and-binary-data" class="section level3">
<h3>Long Strings (strL) and Binary Data</h3>
<p>Stata 13 introduced “long strings” (<code>strL</code>), capable of
storing very large text values. These are stored separately from the
main data matrix in the dta file, with only a reference kept in the data
part. <code>readstata13</code> handles these; by default, they are read
into R character vectors.</p>
<p>Interestingly, Stata also allows embedding binary data (like images,
audio, or other files) within <code>strL</code> variables.<a href="#fn5" class="footnote-ref" id="fnref5"><sup>5</sup></a> While R’s standard
data structures aren’t ideal for directly handling such embedded binary
data within a data frame,<a href="#fn6" class="footnote-ref" id="fnref6"><sup>6</sup></a> <code>readstata13</code> version
<code>0.9.1</code> and later provides the <code>strlexport</code> option
to extract these binary contents to files.</p>
<p>Using <code>strlexport = TRUE</code> and specifying a path with
<code>strlpath</code>, you can save the contents of <code>strL</code>
variables as separate files in a designated directory.</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a><span class="co"># Create a directory for exporting strLs</span></span>
<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a><span class="fu">dir.create</span>(<span class="st">"res/strls/"</span>)</span>
<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a></span>
<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a><span class="co"># Read a dta file containing strLs and export their content</span></span>
<span id="cb21-5"><a href="#cb21-5" tabindex="-1"></a>dat_strl <span class="ot"><-</span> <span class="fu">read.dta13</span>(<span class="st">"stata_strl.dta"</span>, </span>
<span id="cb21-6"><a href="#cb21-6" tabindex="-1"></a> <span class="at">strlexport =</span> <span class="cn">TRUE</span>, </span>
<span id="cb21-7"><a href="#cb21-7" tabindex="-1"></a> <span class="at">strlpath =</span> <span class="st">"res/strls/"</span>)</span>
<span id="cb21-8"><a href="#cb21-8" tabindex="-1"></a></span>
<span id="cb21-9"><a href="#cb21-9" tabindex="-1"></a><span class="co"># List the files created in the export directory.</span></span>
<span id="cb21-10"><a href="#cb21-10" tabindex="-1"></a><span class="co"># The filenames indicate the variable and observation index (e.g., 15_1).</span></span>
<span id="cb21-11"><a href="#cb21-11" tabindex="-1"></a><span class="fu">dir</span>(<span class="st">"res/strls/"</span>)</span>
<span id="cb21-12"><a href="#cb21-12" tabindex="-1"></a><span class="co">#> [1] "15_1" "16_1"</span></span></code></pre></div>
<p>The exported files do not have extensions because the file type is
not inherently known from the <code>strL</code> data itself (and could
vary cell by cell). The user is responsible for determining the correct
file type and processing the content. In this example, the first
exported file (<code>15_1</code>) is a text file.</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a><span class="co"># Read the content of the text file strL export</span></span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a><span class="fu">readLines</span>(<span class="st">"res/strls/15_1"</span>)</span>
<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a><span class="co">#> [1] "R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror."</span></span>
<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a><span class="co">#> [2] "" </span></span>
<span id="cb22-5"><a href="#cb22-5" tabindex="-1"></a><span class="co">#> [3] "If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email." </span></span>
<span id="cb22-6"><a href="#cb22-6" tabindex="-1"></a><span class="co">#> [4] ""</span></span></code></pre></div>
<p>The second file (<code>16_1</code>) is a PNG image. You can read and
display it using appropriate R packages like <code>png</code> and
<code>grid</code>.</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a><span class="fu">library</span>(png)</span>
<span id="cb23-2"><a href="#cb23-2" tabindex="-1"></a><span class="fu">library</span>(grid) <span class="co"># grid is needed for grid.raster</span></span>
<span id="cb23-3"><a href="#cb23-3" tabindex="-1"></a></span>
<span id="cb23-4"><a href="#cb23-4" tabindex="-1"></a><span class="co"># Read the PNG image file</span></span>
<span id="cb23-5"><a href="#cb23-5" tabindex="-1"></a>img <span class="ot"><-</span> <span class="fu">readPNG</span>(<span class="st">"res/strls/16_1"</span>)</span>
<span id="cb23-6"><a href="#cb23-6" tabindex="-1"></a></span>
<span id="cb23-7"><a href="#cb23-7" tabindex="-1"></a><span class="co"># Display the image</span></span>
<span id="cb23-8"><a href="#cb23-8" tabindex="-1"></a>grid<span class="sc">::</span><span class="fu">grid.raster</span>(img)</span></code></pre></div>
<p><img role="img" aria-label="Display of the R logo extracted from a long string." src="" alt="Display of the R logo extracted from a long string." /></p>
</div>
</div>
<div class="footnotes footnotes-end-of-document">
<hr />
<ol>
<li id="fn1"><p>The dta format for current versions is well documented
at <a href="https://www.stata.com/help.cgi?dta" class="uri">https://www.stata.com/help.cgi?dta</a> and also in the
corresponding manuals.<a href="#fnref1" class="footnote-back">↩︎</a></p></li>
<li id="fn2"><p>A detailed explanation can be found here: <a href="https://en.wikipedia.org/wiki/Endianness" class="uri">https://en.wikipedia.org/wiki/Endianness</a>.<a href="#fnref2" class="footnote-back">↩︎</a></p></li>
<li id="fn3"><p>A <a href="https://github.com/sjewo/readstata13/tree/116">development
branch</a> on GitHub even include support for the rarely seen
<code>116</code> format, for which only one public sample file is known
to exist.<a href="#fnref3" class="footnote-back">↩︎</a></p></li>
<li id="fn4"><p>The SOEP is currently located at the <a href="https://www.diw.de/">DIW Berlin</a>.<a href="#fnref4" class="footnote-back">↩︎</a></p></li>
<li id="fn5"><p>A Stata blog post illustrates this feature, showing how
physicians could store X-ray images alongside patient data: <a href="https://www.stata.com/stata-news/news31-4/spotlight/">“In the
spotlight: Storing long strings and entire files in Stata
datasets”</a>.<a href="#fnref5" class="footnote-back">↩︎</a></p></li>
<li id="fn6"><p>The challenge lies in R’s vector types; standard
character vectors aren’t designed for arbitrary binary data, and there’s
no native vector type for image processing or other binary formats
within a data frame context. This also means <code>readstata13</code>
currently cannot create dta files <em>with</em> embedded binary data
from R.<a href="#fnref6" class="footnote-back">↩︎</a></p></li>
</ol>
</div>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>
|