File: readstata13_basic_manual.html

package info (click to toggle)
r-cran-readstata13 0.11.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 804 kB
  • sloc: cpp: 1,770; ansic: 278; makefile: 2
file content (1064 lines) | stat: -rw-r--r-- 142,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />

<meta name="viewport" content="width=device-width, initial-scale=1" />

<meta name="author" content="Jan Marvin Garbuszus &amp; Sebastian Jeworutzki" />

<meta name="date" content="2025-04-25" />

<title>readstata13: Basic Manual</title>

<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
  var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
  var i, h, a;
  for (i = 0; i < hs.length; i++) {
    h = hs[i];
    if (!/^h[1-6]$/i.test(h.tagName)) continue;  // it should be a header h1-h6
    a = h.attributes;
    while (a.length > 0) h.removeAttribute(a[0].name);
  }
});
</script>

<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>



<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
html { -webkit-text-size-adjust: 100%; }
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } 
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.at { color: #7d9029; } 
code span.bn { color: #40a070; } 
code span.bu { color: #008000; } 
code span.cf { color: #007020; font-weight: bold; } 
code span.ch { color: #4070a0; } 
code span.cn { color: #880000; } 
code span.co { color: #60a0b0; font-style: italic; } 
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.do { color: #ba2121; font-style: italic; } 
code span.dt { color: #902000; } 
code span.dv { color: #40a070; } 
code span.er { color: #ff0000; font-weight: bold; } 
code span.ex { } 
code span.fl { color: #40a070; } 
code span.fu { color: #06287e; } 
code span.im { color: #008000; font-weight: bold; } 
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } 
code span.kw { color: #007020; font-weight: bold; } 
code span.op { color: #666666; } 
code span.ot { color: #007020; } 
code span.pp { color: #bc7a00; } 
code span.sc { color: #4070a0; } 
code span.ss { color: #bb6688; } 
code span.st { color: #4070a0; } 
code span.va { color: #19177c; } 
code span.vs { color: #4070a0; } 
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } 
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
  var sheets = document.styleSheets;
  for (var i = 0; i < sheets.length; i++) {
    if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
    try { var rules = sheets[i].cssRules; } catch (e) { continue; }
    var j = 0;
    while (j < rules.length) {
      var rule = rules[j];
      // check if there is a div.sourceCode rule
      if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") {
        j++;
        continue;
      }
      var style = rule.style.cssText;
      // check if color or background-color is set
      if (rule.style.color === '' && rule.style.backgroundColor === '') {
        j++;
        continue;
      }
      // replace div.sourceCode by a pre.sourceCode rule
      sheets[i].deleteRule(j);
      sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
    }
  }
})();
</script>




<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap; 
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }

code > span.kw { color: #555; font-weight: bold; } 
code > span.dt { color: #902000; } 
code > span.dv { color: #40a070; } 
code > span.bn { color: #d14; } 
code > span.fl { color: #d14; } 
code > span.ch { color: #d14; } 
code > span.st { color: #d14; } 
code > span.co { color: #888888; font-style: italic; } 
code > span.ot { color: #007020; } 
code > span.al { color: #ff0000; font-weight: bold; } 
code > span.fu { color: #900; font-weight: bold; } 
code > span.er { color: #a61717; background-color: #e3d2d2; } 
</style>




</head>

<body>




<h1 class="title toc-ignore">readstata13: Basic Manual</h1>
<h4 class="author">Jan Marvin Garbuszus &amp; Sebastian Jeworutzki</h4>
<h4 class="date">2025-04-25</h4>


<div id="TOC">
<ul>
<li><a href="#core-functionality-reading-and-writing-stata-files" id="toc-core-functionality-reading-and-writing-stata-files">Core
Functionality: Reading and Writing Stata files</a></li>
<li><a href="#supported-stata-versions" id="toc-supported-stata-versions">Supported Stata Versions</a></li>
<li><a href="#working-with-labelled-data" id="toc-working-with-labelled-data">Working with Labelled Data</a>
<ul>
<li><a href="#multi-language-support-for-labels" id="toc-multi-language-support-for-labels">Multi-Language Support for
Labels</a></li>
<li><a href="#compatibility-with-other-packages" id="toc-compatibility-with-other-packages">Compatibility with Other
Packages</a></li>
</ul></li>
<li><a href="#handling-large-datasets" id="toc-handling-large-datasets">Handling Large Datasets</a>
<ul>
<li><a href="#partial-reading" id="toc-partial-reading">Partial
Reading</a></li>
<li><a href="#compression" id="toc-compression">Compression</a></li>
</ul></li>
<li><a href="#advanced-features" id="toc-advanced-features">Advanced
Features</a>
<ul>
<li><a href="#frames" id="toc-frames">Frames</a></li>
<li><a href="#long-strings-strl-and-binary-data" id="toc-long-strings-strl-and-binary-data">Long Strings (strL) and
Binary Data</a></li>
</ul></li>
</ul>
</div>

<p>The <code>readstata13</code> package was developed to address
compatibility issues arising from changes in the Stata 13 dta file
format. Prior to Stata 13, packages like <code>foreign</code> could
handle dta files. However, Stata 13 introduced a new format that
resembles XML.<a href="#fn1" class="footnote-ref" id="fnref1"><sup>1</sup></a> Recognizing the need for a new solution, we
(Jan Marvin Garbuszus and Sebastian Jeworutzki) created
<code>readstata13</code>. Leveraging Rcpp for performance, the package
has evolved into a comprehensive tool for working with dta files in
R.</p>
<p>Key features of <code>readstata13</code> include:</p>
<ul>
<li><strong>Broad Format Support:</strong> Ability to import and export
dta files across a wide range of Stata versions, including many
undocumented formats.</li>
<li><strong>Handling Advanced Features:</strong> Support for features
like string encoding, multilingual labels, business calendars, long
strings (<code>strL</code>), frames, and embedded binary data.</li>
<li><strong>Enhanced Functionality:</strong> Built as a direct
replacement for <code>foreign</code>’s dta functions, with added
capabilities for improved label handling (including generation) and
partial data reading (selecting specific rows or variables).</li>
</ul>
<div id="core-functionality-reading-and-writing-stata-files" class="section level2">
<h2>Core Functionality: Reading and Writing Stata files</h2>
<p>Importing a Stata file using <code>readstata13</code> is
straightforward, similar to using the <code>foreign</code> package. The
primary function is <code>read.dta13</code>. To save an R data frame to
the Stata dta format, you use the <code>save.dta13</code> function.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">data</span> (cars)</span>
<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a></span>
<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a><span class="co"># Save the &#39;cars&#39; dataset to a Stata file</span></span>
<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a><span class="fu">save.dta13</span>(cars, <span class="at">file =</span> <span class="st">&quot;res/cars.dta&quot;</span>)</span>
<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a></span>
<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a><span class="co"># Read the saved Stata file back into R</span></span>
<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a>dat <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="st">&quot;res/cars.dta&quot;</span>)</span></code></pre></div>
<p>Beyond the data itself, <code>readstata13</code> preserves important
metadata from the Stata file. This information is stored as attributes
of the imported data frame.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="co"># prints the attributes</span></span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a><span class="fu">attributes</span>(dat)</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="co">#&gt; $row.names</span></span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="co">#&gt;  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25</span></span>
<span id="cb2-5"><a href="#cb2-5" tabindex="-1"></a><span class="co">#&gt; [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50</span></span>
<span id="cb2-6"><a href="#cb2-6" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-7"><a href="#cb2-7" tabindex="-1"></a><span class="co">#&gt; $names</span></span>
<span id="cb2-8"><a href="#cb2-8" tabindex="-1"></a><span class="co">#&gt; [1] &quot;speed&quot; &quot;dist&quot; </span></span>
<span id="cb2-9"><a href="#cb2-9" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-10"><a href="#cb2-10" tabindex="-1"></a><span class="co">#&gt; $class</span></span>
<span id="cb2-11"><a href="#cb2-11" tabindex="-1"></a><span class="co">#&gt; [1] &quot;data.frame&quot;</span></span>
<span id="cb2-12"><a href="#cb2-12" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-13"><a href="#cb2-13" tabindex="-1"></a><span class="co">#&gt; $datalabel</span></span>
<span id="cb2-14"><a href="#cb2-14" tabindex="-1"></a><span class="co">#&gt; [1] &quot;Written by R&quot;</span></span>
<span id="cb2-15"><a href="#cb2-15" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-16"><a href="#cb2-16" tabindex="-1"></a><span class="co">#&gt; $time.stamp</span></span>
<span id="cb2-17"><a href="#cb2-17" tabindex="-1"></a><span class="co">#&gt; [1] &quot;25 Apr 2025 12:18&quot;</span></span>
<span id="cb2-18"><a href="#cb2-18" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-19"><a href="#cb2-19" tabindex="-1"></a><span class="co">#&gt; $formats</span></span>
<span id="cb2-20"><a href="#cb2-20" tabindex="-1"></a><span class="co">#&gt; [1] &quot;%9.0g&quot; &quot;%9.0g&quot;</span></span>
<span id="cb2-21"><a href="#cb2-21" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-22"><a href="#cb2-22" tabindex="-1"></a><span class="co">#&gt; $types</span></span>
<span id="cb2-23"><a href="#cb2-23" tabindex="-1"></a><span class="co">#&gt; [1] 65526 65526</span></span>
<span id="cb2-24"><a href="#cb2-24" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-25"><a href="#cb2-25" tabindex="-1"></a><span class="co">#&gt; $val.labels</span></span>
<span id="cb2-26"><a href="#cb2-26" tabindex="-1"></a><span class="co">#&gt;       </span></span>
<span id="cb2-27"><a href="#cb2-27" tabindex="-1"></a><span class="co">#&gt; &quot;&quot; &quot;&quot; </span></span>
<span id="cb2-28"><a href="#cb2-28" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-29"><a href="#cb2-29" tabindex="-1"></a><span class="co">#&gt; $var.labels</span></span>
<span id="cb2-30"><a href="#cb2-30" tabindex="-1"></a><span class="co">#&gt; [1] &quot;&quot; &quot;&quot;</span></span>
<span id="cb2-31"><a href="#cb2-31" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-32"><a href="#cb2-32" tabindex="-1"></a><span class="co">#&gt; $version</span></span>
<span id="cb2-33"><a href="#cb2-33" tabindex="-1"></a><span class="co">#&gt; [1] 117</span></span>
<span id="cb2-34"><a href="#cb2-34" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-35"><a href="#cb2-35" tabindex="-1"></a><span class="co">#&gt; $label.table</span></span>
<span id="cb2-36"><a href="#cb2-36" tabindex="-1"></a><span class="co">#&gt; list()</span></span>
<span id="cb2-37"><a href="#cb2-37" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-38"><a href="#cb2-38" tabindex="-1"></a><span class="co">#&gt; $expansion.fields</span></span>
<span id="cb2-39"><a href="#cb2-39" tabindex="-1"></a><span class="co">#&gt; list()</span></span>
<span id="cb2-40"><a href="#cb2-40" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-41"><a href="#cb2-41" tabindex="-1"></a><span class="co">#&gt; $byteorder</span></span>
<span id="cb2-42"><a href="#cb2-42" tabindex="-1"></a><span class="co">#&gt; [1] &quot;LSF&quot;</span></span>
<span id="cb2-43"><a href="#cb2-43" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-44"><a href="#cb2-44" tabindex="-1"></a><span class="co">#&gt; $orig.dim</span></span>
<span id="cb2-45"><a href="#cb2-45" tabindex="-1"></a><span class="co">#&gt; [1] 50  2</span></span>
<span id="cb2-46"><a href="#cb2-46" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb2-47"><a href="#cb2-47" tabindex="-1"></a><span class="co">#&gt; $data.label</span></span>
<span id="cb2-48"><a href="#cb2-48" tabindex="-1"></a><span class="co">#&gt; character(0)</span></span></code></pre></div>
<p>Examining the attributes reveals details such as the Stata format
version (e.g., format 117, introduced in Stata 13), a data label, a
timestamp, and information about the data types and formats used in
Stata. In this example, the <code>save.dta13</code> function wrote the
numeric data from R as binary <code>double</code>s in the dta file. The
byte order (endianness) is also recorded; <code>readstata13</code> is
designed to handle both Little Endian (used here) and Big Endian formats
during reading and writing.<a href="#fn2" class="footnote-ref" id="fnref2"><sup>2</sup></a></p>
<p>The package automatically manages the conversion of Stata’s missing
values, value labels, and variable labels during both import and
export.</p>
</div>
<div id="supported-stata-versions" class="section level2">
<h2>Supported Stata Versions</h2>
<p>A key advantage of <code>readstata13</code> is its ability to write
dta files compatible with older and newer versions of Stata. This is
controlled using the <code>version</code> argument in the
<code>save.dta13</code> function. The table below lists supported Stata
versions and their corresponding file formats:</p>
<table>
<thead>
<tr class="header">
<th>Stata Version</th>
<th>File Format</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td>18 - 19</td>
<td>121</td>
</tr>
<tr class="even">
<td>18 - 19</td>
<td>120</td>
</tr>
<tr class="odd">
<td>15 - 19</td>
<td>119</td>
</tr>
<tr class="even">
<td>14 - 19</td>
<td>118</td>
</tr>
<tr class="odd">
<td>13</td>
<td>117</td>
</tr>
<tr class="even">
<td>12</td>
<td>115</td>
</tr>
<tr class="odd">
<td>10 - 11</td>
<td>114</td>
</tr>
<tr class="even">
<td>8 - 9</td>
<td>113</td>
</tr>
<tr class="odd">
<td>7</td>
<td>110</td>
</tr>
<tr class="even">
<td>6</td>
<td>108</td>
</tr>
</tbody>
</table>
<p>While this table shows the most common formats,
<code>readstata13</code> supports reading files from Stata version 1
(format 102) up to the latest format 121 (used for files with over
32,767 variables, readable by Stata 18 &amp; 19 MP).<a href="#fn3" class="footnote-ref" id="fnref3"><sup>3</sup></a> The dta format has
evolved over time to accommodate larger datasets and longer variable
names or labels. Although <code>readstata13</code> can read virtually
any format, its ability to write files that <em>fit</em> within Stata’s
historical limits depends on the data size. For general compatibility,
it’s recommended to target versions 7 or later (formats 110+), which
aligns with the default in <code>foreign::write.dta</code>.</p>
<p>Here’s an example of saving a file compatible with Stata 7:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="co"># Save the cars dataset as a Stata 7 dta file</span></span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">save.dta13</span>(cars, <span class="st">&quot;res/cars_version.dta&quot;</span>, <span class="at">version =</span> <span class="dv">7</span>)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a></span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co"># Read the file back and check its reported version</span></span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a>dat3 <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="st">&quot;res/cars_version.dta&quot;</span>)</span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="fu">attr</span>(dat3, <span class="st">&quot;version&quot;</span>)</span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a><span class="co">#&gt; [1] 110</span></span></code></pre></div>
</div>
<div id="working-with-labelled-data" class="section level2">
<h2>Working with Labelled Data</h2>
<p>Stata datasets often include rich metadata like variable and value
labels. Since base R data frames don’t natively support this,
<code>readstata13</code> stores this information in various attributes
of the imported data frame, mirroring the approach used by
<code>foreign::read.dta</code>.</p>
<p>Let’s use the example dataset “statacar.dta” included with the
<code>readstata13</code> package. We’ll initially import it without
converting categorical data to R factors, keeping the original numeric
codes.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">library</span>(readstata13)</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>x <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="fu">system.file</span>(<span class="st">&quot;extdata/statacar.dta&quot;</span>, </span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a>                            <span class="at">package =</span> <span class="st">&quot;readstata13&quot;</span>),</span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>                <span class="at">convert.factors =</span> <span class="cn">FALSE</span>)</span></code></pre></div>
<p>Variable labels are accessible via the <code>var.labels</code>
attribute:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">attr</span>(x, <span class="st">&quot;var.labels&quot;</span>)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#&gt;  [1] &quot;Numeric ID&quot;             &quot;Brand of car&quot;           &quot;Car model&quot;             </span></span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#&gt;  [4] &quot;Car classification&quot;     &quot;Horse Power&quot;            &quot;Maximum speed&quot;         </span></span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#&gt;  [7] &quot;&quot;                       &quot;&quot;                       &quot;Launch date&quot;           </span></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#&gt; [10] &quot;Launch date (calendar)&quot; &quot;&quot;</span></span></code></pre></div>
<p>You can retrieve the label for a specific variable using the
<code>varlabel()</code> function:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">varlabel</span>(x, <span class="at">var.name =</span> <span class="st">&quot;type&quot;</span>)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="co">#&gt;                 type </span></span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#&gt; &quot;Car classification&quot;</span></span></code></pre></div>
<p>Value labels, which map numeric codes to descriptive text, are stored
in a more structured way. The <code>val.labels</code> attribute
indicates which variables have associated value labels. The actual label
definitions (the mapping from codes to labels) are stored as a list in
the <code>label.table</code> attribute.</p>
<p>In our example dataset, only one column has value labels:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">attr</span>(x, <span class="st">&quot;val.labels&quot;</span>)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#&gt;                                 type_en                                         </span></span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#&gt;        &quot;&quot;        &quot;&quot;        &quot;&quot; &quot;type_en&quot;        &quot;&quot;        &quot;&quot;        &quot;&quot;        &quot;&quot; </span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#&gt;                               </span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#&gt;        &quot;&quot;        &quot;&quot;        &quot;&quot;</span></span></code></pre></div>
<p>The corresponding label table for the ‘type’ variable is named
<code>type_en</code>. It’s a named vector where the numeric codes are
the vector values and the labels are the names:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">attr</span>(x, <span class="st">&quot;label.table&quot;</span>)<span class="sc">$</span>type_en</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a><span class="co">#&gt;         min    Off-Road    Roadster    City car  Family car         max </span></span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a><span class="co">#&gt; -2147483647           1           2           3           4  2147483620</span></span></code></pre></div>
<p>Convenience functions like <code>get.label.name()</code> and
<code>get.label()</code> provide alternative ways to access this
information:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a><span class="fu">get.label.name</span>(x, <span class="at">var.name =</span> <span class="st">&quot;type&quot;</span>)</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a><span class="co">#&gt;      type </span></span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a><span class="co">#&gt; &quot;type_en&quot;</span></span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a><span class="fu">get.label</span>(x, <span class="st">&quot;type_en&quot;</span>)</span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a><span class="co">#&gt;         min    Off-Road    Roadster    City car  Family car         max </span></span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a><span class="co">#&gt; -2147483647           1           2           3           4  2147483620</span></span></code></pre></div>
<p>A common task is converting a numeric variable with value labels into
an R factor. <code>readstata13</code> simplifies this with the
<code>set.label()</code> function, which uses the stored label
information to create the factor levels.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a><span class="co"># Create a factor variable &#39;type_en&#39; from the &#39;type&#39; variable using stored labels</span></span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>x<span class="sc">$</span>type_en <span class="ot">&lt;-</span> <span class="fu">set.label</span>(x, <span class="st">&quot;type&quot;</span>)</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a></span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a><span class="co"># Display the original numeric column and the new factor column</span></span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a>x[, <span class="fu">c</span>(<span class="st">&quot;type&quot;</span>, <span class="st">&quot;type_en&quot;</span>)]</span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#&gt;          type    type_en</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#&gt; 1           2   Roadster</span></span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#&gt; 2           4 Family car</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#&gt; 3           3   City car</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#&gt; 4           4 Family car</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#&gt; 5           1   Off-Road</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#&gt; 6           3   City car</span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a><span class="co">#&gt; 7  2147483620        max</span></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a><span class="co">#&gt; 8 -2147483647        min</span></span></code></pre></div>
<div id="multi-language-support-for-labels" class="section level3">
<h3>Multi-Language Support for Labels</h3>
<p>Stata allows datasets to include labels in multiple languages.
<code>readstata13</code> supports this, and the <code>lang</code> option
in <code>set.label()</code> lets you specify which language’s labels to
use when creating a factor.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a><span class="co"># Check available languages and the default language</span></span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a><span class="fu">get.lang</span>(x)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a><span class="co">#&gt; Available languages:</span></span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a><span class="co">#&gt;  en</span></span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#&gt;  de</span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#&gt; Default language:</span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#&gt;  en</span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a></span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co"># Create a factor using the German labels</span></span>
<span id="cb11-11"><a href="#cb11-11" tabindex="-1"></a>x<span class="sc">$</span>type_de <span class="ot">&lt;-</span> <span class="fu">set.label</span>(x, <span class="st">&quot;type&quot;</span>, <span class="at">lang =</span> <span class="st">&quot;de&quot;</span>)</span>
<span id="cb11-12"><a href="#cb11-12" tabindex="-1"></a></span>
<span id="cb11-13"><a href="#cb11-13" tabindex="-1"></a><span class="co"># Display the original and both language factor columns</span></span>
<span id="cb11-14"><a href="#cb11-14" tabindex="-1"></a>x[, <span class="fu">c</span>(<span class="st">&quot;type&quot;</span>, <span class="st">&quot;type_en&quot;</span>, <span class="st">&quot;type_de&quot;</span>)]</span>
<span id="cb11-15"><a href="#cb11-15" tabindex="-1"></a><span class="co">#&gt;          type    type_en      type_de</span></span>
<span id="cb11-16"><a href="#cb11-16" tabindex="-1"></a><span class="co">#&gt; 1           2   Roadster   Sportwagen</span></span>
<span id="cb11-17"><a href="#cb11-17" tabindex="-1"></a><span class="co">#&gt; 2           4 Family car Familienauto</span></span>
<span id="cb11-18"><a href="#cb11-18" tabindex="-1"></a><span class="co">#&gt; 3           3   City car    Stadtauto</span></span>
<span id="cb11-19"><a href="#cb11-19" tabindex="-1"></a><span class="co">#&gt; 4           4 Family car Familienauto</span></span>
<span id="cb11-20"><a href="#cb11-20" tabindex="-1"></a><span class="co">#&gt; 5           1   Off-Road Geländewagen</span></span>
<span id="cb11-21"><a href="#cb11-21" tabindex="-1"></a><span class="co">#&gt; 6           3   City car    Stadtauto</span></span>
<span id="cb11-22"><a href="#cb11-22" tabindex="-1"></a><span class="co">#&gt; 7  2147483620        max          max</span></span>
<span id="cb11-23"><a href="#cb11-23" tabindex="-1"></a><span class="co">#&gt; 8 -2147483647        min          min</span></span></code></pre></div>
</div>
<div id="compatibility-with-other-packages" class="section level3">
<h3>Compatibility with Other Packages</h3>
<p><code>readstata13</code> is designed to integrate well with other R
packages that work with labelled data, such as <code>labelled</code> and
<code>expss</code>.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" tabindex="-1"></a><span class="co"># Requires labelled package version &gt; 2.8.0 due to a past bug</span></span>
<span id="cb12-2"><a href="#cb12-2" tabindex="-1"></a><span class="fu">library</span>(labelled)</span>
<span id="cb12-3"><a href="#cb12-3" tabindex="-1"></a></span>
<span id="cb12-4"><a href="#cb12-4" tabindex="-1"></a><span class="co"># Read the data and convert to the &#39;labelled&#39; class format</span></span>
<span id="cb12-5"><a href="#cb12-5" tabindex="-1"></a>xl <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="fu">system.file</span>(<span class="st">&quot;extdata/statacar.dta&quot;</span>, </span>
<span id="cb12-6"><a href="#cb12-6" tabindex="-1"></a>                             <span class="at">package =</span> <span class="st">&quot;readstata13&quot;</span>),</span>
<span id="cb12-7"><a href="#cb12-7" tabindex="-1"></a>                <span class="at">convert.factors =</span> <span class="cn">FALSE</span>)</span>
<span id="cb12-8"><a href="#cb12-8" tabindex="-1"></a></span>
<span id="cb12-9"><a href="#cb12-9" tabindex="-1"></a>xl <span class="ot">&lt;-</span> <span class="fu">to_labelled</span>(xl)</span>
<span id="cb12-10"><a href="#cb12-10" tabindex="-1"></a>xl</span>
<span id="cb12-11"><a href="#cb12-11" tabindex="-1"></a><span class="co">#&gt; # A tibble: 8 × 11</span></span>
<span id="cb12-12"><a href="#cb12-12" tabindex="-1"></a><span class="co">#&gt;      id brand   model    type     hp         max  mileage  ecar ldate ldatecal  </span></span>
<span id="cb12-13"><a href="#cb12-13" tabindex="-1"></a><span class="co">#&gt; * &lt;int&gt; &lt;chr&gt;   &lt;chr&gt;   &lt;int&gt;  &lt;int&gt;       &lt;dbl&gt;    &lt;dbl&gt; &lt;int&gt; &lt;int&gt; &lt;date&gt;    </span></span>
<span id="cb12-14"><a href="#cb12-14" tabindex="-1"></a><span class="co">#&gt; 1     1 Meyer   Spee…  2   e0    150    1.77e  2  1.02e 1     0     1 2001-01-03</span></span>
<span id="cb12-15"><a href="#cb12-15" tabindex="-1"></a><span class="co">#&gt; 2     2 Meyer   Happ…  4   e0     98    1.45e  2  5.60e 0     0   247 2001-12-31</span></span>
<span id="cb12-16"><a href="#cb12-16" tabindex="-1"></a><span class="co">#&gt; 3     3 Akiko   Susu…  3   e0     45    1.19e  2 NA           0    14 2001-01-23</span></span>
<span id="cb12-17"><a href="#cb12-17" tabindex="-1"></a><span class="co">#&gt; 4     4 Akiko   Susu…  4   e0     80    1.27e  2  6.80e 0     0   134 2001-07-16</span></span>
<span id="cb12-18"><a href="#cb12-18" tabindex="-1"></a><span class="co">#&gt; 5     5 Hutch   Lumb…  1   e0    180    1.56e  2  1.42e 1     0   110 2001-06-11</span></span>
<span id="cb12-19"><a href="#cb12-19" tabindex="-1"></a><span class="co">#&gt; 6     6 Erikson E-Ca…  3   e0     NA   NA        NA           1   100 2001-05-25</span></span>
<span id="cb12-20"><a href="#cb12-20" tabindex="-1"></a><span class="co">#&gt; 7     7 Erikson Maxi…  2.15e9  32740    8.99e307  1.70e38   100    19 2001-01-30</span></span>
<span id="cb12-21"><a href="#cb12-21" tabindex="-1"></a><span class="co">#&gt; 8     7 Erikson Mimi… -2.15e9 -32767 -Inf        -1.70e38  -127     1 2001-01-03</span></span>
<span id="cb12-22"><a href="#cb12-22" tabindex="-1"></a><span class="co">#&gt; # ℹ 1 more variable: modelStrL &lt;chr&gt;</span></span></code></pre></div>
<p>Packages like <code>expss</code> can utilize the label information
stored by <code>readstata13</code> (and converted by
<code>labelled</code>) for creating descriptive tables and plots.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" tabindex="-1"></a><span class="fu">library</span>(expss)</span>
<span id="cb13-2"><a href="#cb13-2" tabindex="-1"></a><span class="co">#&gt; Loading required package: maditr</span></span>
<span id="cb13-3"><a href="#cb13-3" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb13-4"><a href="#cb13-4" tabindex="-1"></a><span class="co">#&gt; To aggregate data: take(mtcars, mean_mpg = mean(mpg), by = am)</span></span>
<span id="cb13-5"><a href="#cb13-5" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb13-6"><a href="#cb13-6" tabindex="-1"></a><span class="co">#&gt; Use &#39;expss_output_rnotebook()&#39; to display tables inside R Notebooks.</span></span>
<span id="cb13-7"><a href="#cb13-7" tabindex="-1"></a><span class="co">#&gt;  To return to the console output, use &#39;expss_output_default()&#39;.</span></span>
<span id="cb13-8"><a href="#cb13-8" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb13-9"><a href="#cb13-9" tabindex="-1"></a><span class="co">#&gt; Attaching package: &#39;expss&#39;</span></span>
<span id="cb13-10"><a href="#cb13-10" tabindex="-1"></a><span class="co">#&gt; The following object is masked from &#39;package:labelled&#39;:</span></span>
<span id="cb13-11"><a href="#cb13-11" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb13-12"><a href="#cb13-12" tabindex="-1"></a><span class="co">#&gt;     is.labelled</span></span>
<span id="cb13-13"><a href="#cb13-13" tabindex="-1"></a></span>
<span id="cb13-14"><a href="#cb13-14" tabindex="-1"></a><span class="co"># Example: Use expss to create a table summarizing horse power by car brand</span></span>
<span id="cb13-15"><a href="#cb13-15" tabindex="-1"></a><span class="co"># First, handle missing or negative HP values</span></span>
<span id="cb13-16"><a href="#cb13-16" tabindex="-1"></a>xl[xl<span class="sc">$</span>hp <span class="sc">&lt;</span> <span class="dv">0</span> <span class="sc">|</span> <span class="fu">is.na</span>(xl<span class="sc">$</span>hp), <span class="st">&quot;hp&quot;</span>] <span class="ot">&lt;-</span> <span class="cn">NA</span></span>
<span id="cb13-17"><a href="#cb13-17" tabindex="-1"></a></span>
<span id="cb13-18"><a href="#cb13-18" tabindex="-1"></a><span class="co"># Create the table using expss piping syntax</span></span>
<span id="cb13-19"><a href="#cb13-19" tabindex="-1"></a>xl <span class="sc">%&gt;%</span></span>
<span id="cb13-20"><a href="#cb13-20" tabindex="-1"></a>  <span class="fu">tab_cells</span>(hp) <span class="sc">%&gt;%</span> <span class="co"># Specify the variable for cells</span></span>
<span id="cb13-21"><a href="#cb13-21" tabindex="-1"></a>  <span class="fu">tab_cols</span>(brand) <span class="sc">%&gt;%</span> <span class="co"># Specify the variable for columns</span></span>
<span id="cb13-22"><a href="#cb13-22" tabindex="-1"></a>  <span class="fu">tab_stat_mean_sd_n</span>() <span class="sc">%&gt;%</span> <span class="co"># Calculate mean, standard deviation, and N</span></span>
<span id="cb13-23"><a href="#cb13-23" tabindex="-1"></a>  <span class="fu">tab_pivot</span>() <span class="sc">%&gt;%</span> <span class="co"># Pivot the table</span></span>
<span id="cb13-24"><a href="#cb13-24" tabindex="-1"></a>  <span class="fu">set_caption</span>(<span class="st">&quot;Horse power by car brand.&quot;</span>) <span class="co"># Add a caption</span></span></code></pre></div>
<table class="gmisc_table" style="border-collapse: collapse; margin-top: 1em; margin-bottom: 1em;">
<thead>
<tr>
<td colspan="5" style="text-align: left;">
Horse power by car brand.
</td>
</tr>
<tr>
<th style="border-top: 2px solid grey;">
</th>
<th colspan="4" style="font-weight: 900; border-bottom: 1px solid grey; border-top: 2px solid grey; text-align: center;">
 Brand of car 
</th>
</tr>
<tr>
<th style="border-bottom: 1px solid grey; font-weight: 900; text-align: center;">
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
 Akiko 
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
 Erikson 
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
 Hutch 
</th>
<th style="font-weight: 900; border-bottom: 1px solid grey; text-align: center;">
 Meyer 
</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="5" style="font-weight: 900;">
 Horse Power 
</td>
</tr>
<tr>
<td style="text-align: left;">
   Mean 
</td>
<td style="text-align: right;">
62.5
</td>
<td style="text-align: right;">
32740
</td>
<td style="text-align: right;">
180
</td>
<td style="text-align: right;">
124.0
</td>
</tr>
<tr>
<td style="text-align: left;">
   Std. dev. 
</td>
<td style="text-align: right;">
24.7
</td>
<td style="text-align: right;">
</td>
<td style="text-align: right;">
</td>
<td style="text-align: right;">
36.8
</td>
</tr>
<tr>
<td style="border-bottom: 2px solid grey; text-align: left;">
   Unw. valid N 
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
2.0
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
1
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
1
</td>
<td style="border-bottom: 2px solid grey; text-align: right;">
2.0
</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="handling-large-datasets" class="section level2">
<h2>Handling Large Datasets</h2>
<p>As datasets grow, importing and managing them in memory can become
challenging. <code>readstata13</code> provides features to work
efficiently with large dta files.</p>
<div id="partial-reading" class="section level3">
<h3>Partial Reading</h3>
<p>To avoid loading an entire large dataset when only a subset is
needed, <code>readstata13</code> allows you to read specific rows or
columns. This is particularly useful for exploring large files or
extracting key variables without consuming excessive memory or time.</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" tabindex="-1"></a><span class="co"># Read only the first 3 rows of the dataset</span></span>
<span id="cb14-2"><a href="#cb14-2" tabindex="-1"></a>dat_1 <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="st">&quot;res/cars.dta&quot;</span>, <span class="at">select.rows =</span> <span class="fu">c</span>(<span class="dv">1</span>,<span class="dv">3</span>)); dat_1</span>
<span id="cb14-3"><a href="#cb14-3" tabindex="-1"></a><span class="co">#&gt;   speed dist</span></span>
<span id="cb14-4"><a href="#cb14-4" tabindex="-1"></a><span class="co">#&gt; 1     4    2</span></span>
<span id="cb14-5"><a href="#cb14-5" tabindex="-1"></a><span class="co">#&gt; 2     4   10</span></span>
<span id="cb14-6"><a href="#cb14-6" tabindex="-1"></a><span class="co">#&gt; 3     7    4</span></span>
<span id="cb14-7"><a href="#cb14-7" tabindex="-1"></a></span>
<span id="cb14-8"><a href="#cb14-8" tabindex="-1"></a><span class="co"># Read only the &#39;dist&#39; variable from the dataset</span></span>
<span id="cb14-9"><a href="#cb14-9" tabindex="-1"></a>dat_2 <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="st">&quot;res/cars.dta&quot;</span>, <span class="at">select.cols =</span> <span class="st">&quot;dist&quot;</span>); <span class="fu">head</span>(dat_2)</span>
<span id="cb14-10"><a href="#cb14-10" tabindex="-1"></a><span class="co">#&gt;   dist</span></span>
<span id="cb14-11"><a href="#cb14-11" tabindex="-1"></a><span class="co">#&gt; 1    2</span></span>
<span id="cb14-12"><a href="#cb14-12" tabindex="-1"></a><span class="co">#&gt; 2   10</span></span>
<span id="cb14-13"><a href="#cb14-13" tabindex="-1"></a><span class="co">#&gt; 3    4</span></span>
<span id="cb14-14"><a href="#cb14-14" tabindex="-1"></a><span class="co">#&gt; 4   22</span></span>
<span id="cb14-15"><a href="#cb14-15" tabindex="-1"></a><span class="co">#&gt; 5   16</span></span>
<span id="cb14-16"><a href="#cb14-16" tabindex="-1"></a><span class="co">#&gt; 6   10</span></span></code></pre></div>
<p>A practical application of partial reading is working with large
survey datasets like the SOEP (German Socio-Economic Panel).<a href="#fn4" class="footnote-ref" id="fnref4"><sup>4</sup></a> These
datasets are often distributed across multiple files, structured like
tables in a database. To link information across files, you need key
identifier variables. Instead of importing entire multi-gigabyte files
just to get a few ID columns, you can use <code>select.cols</code> to
quickly and efficiently read only the necessary variables.</p>
</div>
<div id="compression" class="section level3">
<h3>Compression</h3>
<p>When saving data to a dta file, you can use the
<code>compress = TRUE</code> option in <code>save.dta13</code>. This
instructs the package to use the smallest possible Stata data type for
each variable, potentially reducing the file size.</p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" tabindex="-1"></a><span class="co"># Save the cars dataset with compression enabled</span></span>
<span id="cb15-2"><a href="#cb15-2" tabindex="-1"></a><span class="fu">save.dta13</span>(cars, <span class="at">file =</span> <span class="st">&quot;res/cars_compress.dta&quot;</span>, <span class="at">compress =</span> <span class="cn">TRUE</span>)</span>
<span id="cb15-3"><a href="#cb15-3" tabindex="-1"></a></span>
<span id="cb15-4"><a href="#cb15-4" tabindex="-1"></a><span class="co"># Import the compressed file and check the resulting data types</span></span>
<span id="cb15-5"><a href="#cb15-5" tabindex="-1"></a>dat2 <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="at">file =</span> <span class="st">&quot;res/cars_compress.dta&quot;</span>)</span>
<span id="cb15-6"><a href="#cb15-6" tabindex="-1"></a><span class="fu">attr</span>(dat2, <span class="st">&quot;types&quot;</span>)</span>
<span id="cb15-7"><a href="#cb15-7" tabindex="-1"></a><span class="co">#&gt; [1] 65530 65529</span></span></code></pre></div>
<p>In this example, the <code>numeric</code> vector in R was safely
stored as an <code>integer</code> in the compressed dta file because its
values fit within the integer range. The main benefit of compression is
the reduction in file size. The only notable change is that after
re-import, the former <code>numeric</code> column has become an
<code>integer</code>.</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" tabindex="-1"></a><span class="fu">rbind</span>(<span class="fu">file.info</span>(<span class="st">&quot;res/cars.dta&quot;</span>)[<span class="st">&quot;size&quot;</span>],</span>
<span id="cb16-2"><a href="#cb16-2" tabindex="-1"></a>      <span class="fu">file.info</span>(<span class="st">&quot;res/cars_compress.dta&quot;</span>)[<span class="st">&quot;size&quot;</span>])</span>
<span id="cb16-3"><a href="#cb16-3" tabindex="-1"></a><span class="co">#&gt;                       size</span></span>
<span id="cb16-4"><a href="#cb16-4" tabindex="-1"></a><span class="co">#&gt; res/cars.dta          1762</span></span>
<span id="cb16-5"><a href="#cb16-5" tabindex="-1"></a><span class="co">#&gt; res/cars_compress.dta 1112</span></span></code></pre></div>
</div>
</div>
<div id="advanced-features" class="section level2">
<h2>Advanced Features</h2>
<div id="frames" class="section level3">
<h3>Frames</h3>
<p>Stata version 16 introduced the concept of data <a href="https://www.stata.com/help.cgi?frames">frames</a>, allowing
multiple datasets to be held in memory simultaneously and saved together
in a “.dtas” file (a Stata frameset). A “.dtas” file is essentially a
zip archive containing a separate dta file for each frame.</p>
<p>The <code>get.frames</code> function in <code>readstata13</code> can
inspect a “.dtas” file and list the names (defined within Stata), the
internal filename and version of the frames it contains:</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" tabindex="-1"></a>dtas_path <span class="ot">&lt;-</span> <span class="fu">system.file</span>(<span class="st">&quot;extdata&quot;</span>, <span class="st">&quot;myproject2.dtas&quot;</span>,</span>
<span id="cb17-2"><a href="#cb17-2" tabindex="-1"></a>                         <span class="at">package=</span><span class="st">&quot;readstata13&quot;</span>)</span>
<span id="cb17-3"><a href="#cb17-3" tabindex="-1"></a></span>
<span id="cb17-4"><a href="#cb17-4" tabindex="-1"></a><span class="co"># Get information about frames in the .dtas file</span></span>
<span id="cb17-5"><a href="#cb17-5" tabindex="-1"></a><span class="fu">get.frames</span>(dtas_path)</span>
<span id="cb17-6"><a href="#cb17-6" tabindex="-1"></a><span class="co">#&gt;       name      filename version</span></span>
<span id="cb17-7"><a href="#cb17-7" tabindex="-1"></a><span class="co">#&gt; 1  persons  persons~0000     120</span></span>
<span id="cb17-8"><a href="#cb17-8" tabindex="-1"></a><span class="co">#&gt; 2 counties counties~0001     118</span></span></code></pre></div>
<p>To import data from a “.dtas” file, use <code>read.dtas</code>. By
default, it imports all frames and returns them as a named list of R
data frames.</p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" tabindex="-1"></a><span class="co"># Read all frames from the .dtas file</span></span>
<span id="cb18-2"><a href="#cb18-2" tabindex="-1"></a><span class="fu">read.dtas</span>(dtas_path)</span>
<span id="cb18-3"><a href="#cb18-3" tabindex="-1"></a><span class="co">#&gt; Warning in stata_read(filepath, missing.type, select.rows, select.cols_chr, :</span></span>
<span id="cb18-4"><a href="#cb18-4" tabindex="-1"></a><span class="co">#&gt; File contains unhandled alias variable in column: 5</span></span>
<span id="cb18-5"><a href="#cb18-5" tabindex="-1"></a><span class="co">#&gt; $persons</span></span>
<span id="cb18-6"><a href="#cb18-6" tabindex="-1"></a><span class="co">#&gt;    personid countyid income counties median     ratio</span></span>
<span id="cb18-7"><a href="#cb18-7" tabindex="-1"></a><span class="co">#&gt; 1         1        5  30818        5        0.7038001</span></span>
<span id="cb18-8"><a href="#cb18-8" tabindex="-1"></a><span class="co">#&gt; 2         2        3  30752        3        0.4225046</span></span>
<span id="cb18-9"><a href="#cb18-9" tabindex="-1"></a><span class="co">#&gt; 3         3        2  29673        2        0.5230381</span></span>
<span id="cb18-10"><a href="#cb18-10" tabindex="-1"></a><span class="co">#&gt; 4         4        3  32115        3        0.4412310</span></span>
<span id="cb18-11"><a href="#cb18-11" tabindex="-1"></a><span class="co">#&gt; 5         5        2  31189        2        0.5497603</span></span>
<span id="cb18-12"><a href="#cb18-12" tabindex="-1"></a><span class="co">#&gt; 6         6        1  30992        1        0.6725256</span></span>
<span id="cb18-13"><a href="#cb18-13" tabindex="-1"></a><span class="co">#&gt; 7         7        3  34328        3        0.4716356</span></span>
<span id="cb18-14"><a href="#cb18-14" tabindex="-1"></a><span class="co">#&gt; 8         8        3  31508        3        0.4328914</span></span>
<span id="cb18-15"><a href="#cb18-15" tabindex="-1"></a><span class="co">#&gt; 9         9        5  26071        5        0.5953915</span></span>
<span id="cb18-16"><a href="#cb18-16" tabindex="-1"></a><span class="co">#&gt; 10       10        5  29768        5        0.6798210</span></span>
<span id="cb18-17"><a href="#cb18-17" tabindex="-1"></a><span class="co">#&gt; 11       11        2  34757        2        0.6126525</span></span>
<span id="cb18-18"><a href="#cb18-18" tabindex="-1"></a><span class="co">#&gt; 12       12        3  25630        3        0.3521330</span></span>
<span id="cb18-19"><a href="#cb18-19" tabindex="-1"></a><span class="co">#&gt; 13       13        1  29146        1        0.6324675</span></span>
<span id="cb18-20"><a href="#cb18-20" tabindex="-1"></a><span class="co">#&gt; 14       14        5  25752        5        0.5881063</span></span>
<span id="cb18-21"><a href="#cb18-21" tabindex="-1"></a><span class="co">#&gt; 15       15        1  26806        1        0.5816895</span></span>
<span id="cb18-22"><a href="#cb18-22" tabindex="-1"></a><span class="co">#&gt; 16       16        2  34368        2        0.6057957</span></span>
<span id="cb18-23"><a href="#cb18-23" tabindex="-1"></a><span class="co">#&gt; 17       17        3  26914        3        0.3697740</span></span>
<span id="cb18-24"><a href="#cb18-24" tabindex="-1"></a><span class="co">#&gt; 18       18        2  25886        2        0.4562857</span></span>
<span id="cb18-25"><a href="#cb18-25" tabindex="-1"></a><span class="co">#&gt; 19       19        1  29321        1        0.6362650</span></span>
<span id="cb18-26"><a href="#cb18-26" tabindex="-1"></a><span class="co">#&gt; 20       20        5  29571        5        0.6753220</span></span>
<span id="cb18-27"><a href="#cb18-27" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb18-28"><a href="#cb18-28" tabindex="-1"></a><span class="co">#&gt; $counties</span></span>
<span id="cb18-29"><a href="#cb18-29" tabindex="-1"></a><span class="co">#&gt;    countyid median_income</span></span>
<span id="cb18-30"><a href="#cb18-30" tabindex="-1"></a><span class="co">#&gt; 1    Brazos         46083</span></span>
<span id="cb18-31"><a href="#cb18-31" tabindex="-1"></a><span class="co">#&gt; 2    Dallas         56732</span></span>
<span id="cb18-32"><a href="#cb18-32" tabindex="-1"></a><span class="co">#&gt; 3    Travis         72785</span></span>
<span id="cb18-33"><a href="#cb18-33" tabindex="-1"></a><span class="co">#&gt; 4    Harris         58664</span></span>
<span id="cb18-34"><a href="#cb18-34" tabindex="-1"></a><span class="co">#&gt; 5    Potter         43788</span></span>
<span id="cb18-35"><a href="#cb18-35" tabindex="-1"></a><span class="co">#&gt; 6   El Paso         44120</span></span>
<span id="cb18-36"><a href="#cb18-36" tabindex="-1"></a><span class="co">#&gt; 7     Bowie         49153</span></span>
<span id="cb18-37"><a href="#cb18-37" tabindex="-1"></a><span class="co">#&gt; 8 Galveston         69674</span></span></code></pre></div>
<p>You can import only specific frames using the
<code>select.frames</code> argument:</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" tabindex="-1"></a><span class="co"># Read only the &quot;counties&quot; frame</span></span>
<span id="cb19-2"><a href="#cb19-2" tabindex="-1"></a><span class="fu">read.dtas</span>(dtas_path, <span class="at">select.frames =</span> <span class="st">&quot;counties&quot;</span>)</span>
<span id="cb19-3"><a href="#cb19-3" tabindex="-1"></a><span class="co">#&gt; $counties</span></span>
<span id="cb19-4"><a href="#cb19-4" tabindex="-1"></a><span class="co">#&gt;    countyid median_income</span></span>
<span id="cb19-5"><a href="#cb19-5" tabindex="-1"></a><span class="co">#&gt; 1    Brazos         46083</span></span>
<span id="cb19-6"><a href="#cb19-6" tabindex="-1"></a><span class="co">#&gt; 2    Dallas         56732</span></span>
<span id="cb19-7"><a href="#cb19-7" tabindex="-1"></a><span class="co">#&gt; 3    Travis         72785</span></span>
<span id="cb19-8"><a href="#cb19-8" tabindex="-1"></a><span class="co">#&gt; 4    Harris         58664</span></span>
<span id="cb19-9"><a href="#cb19-9" tabindex="-1"></a><span class="co">#&gt; 5    Potter         43788</span></span>
<span id="cb19-10"><a href="#cb19-10" tabindex="-1"></a><span class="co">#&gt; 6   El Paso         44120</span></span>
<span id="cb19-11"><a href="#cb19-11" tabindex="-1"></a><span class="co">#&gt; 7     Bowie         49153</span></span>
<span id="cb19-12"><a href="#cb19-12" tabindex="-1"></a><span class="co">#&gt; 8 Galveston         69674</span></span></code></pre></div>
<p>Furthermore, you can apply specific <code>read.dta13</code> options
to individual frames within the “.dtas” file by providing a list to the
<code>read.dta13.options</code> argument. The list structure should be
<code>list(framename = list(param = value))</code>.</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" tabindex="-1"></a><span class="co"># Read frames with different column selections for each</span></span>
<span id="cb20-2"><a href="#cb20-2" tabindex="-1"></a><span class="fu">read.dtas</span>(dtas_path,</span>
<span id="cb20-3"><a href="#cb20-3" tabindex="-1"></a>          <span class="at">read.dta13.options =</span> <span class="fu">list</span>(<span class="at">counties =</span> <span class="fu">list</span>(<span class="at">select.cols =</span> <span class="st">&quot;median_income&quot;</span>),</span>
<span id="cb20-4"><a href="#cb20-4" tabindex="-1"></a>                                    <span class="at">persons =</span> <span class="fu">list</span>(<span class="at">select.cols =</span> <span class="st">&quot;income&quot;</span>)))</span>
<span id="cb20-5"><a href="#cb20-5" tabindex="-1"></a><span class="co">#&gt; $persons</span></span>
<span id="cb20-6"><a href="#cb20-6" tabindex="-1"></a><span class="co">#&gt;    income</span></span>
<span id="cb20-7"><a href="#cb20-7" tabindex="-1"></a><span class="co">#&gt; 1   30818</span></span>
<span id="cb20-8"><a href="#cb20-8" tabindex="-1"></a><span class="co">#&gt; 2   30752</span></span>
<span id="cb20-9"><a href="#cb20-9" tabindex="-1"></a><span class="co">#&gt; 3   29673</span></span>
<span id="cb20-10"><a href="#cb20-10" tabindex="-1"></a><span class="co">#&gt; 4   32115</span></span>
<span id="cb20-11"><a href="#cb20-11" tabindex="-1"></a><span class="co">#&gt; 5   31189</span></span>
<span id="cb20-12"><a href="#cb20-12" tabindex="-1"></a><span class="co">#&gt; 6   30992</span></span>
<span id="cb20-13"><a href="#cb20-13" tabindex="-1"></a><span class="co">#&gt; 7   34328</span></span>
<span id="cb20-14"><a href="#cb20-14" tabindex="-1"></a><span class="co">#&gt; 8   31508</span></span>
<span id="cb20-15"><a href="#cb20-15" tabindex="-1"></a><span class="co">#&gt; 9   26071</span></span>
<span id="cb20-16"><a href="#cb20-16" tabindex="-1"></a><span class="co">#&gt; 10  29768</span></span>
<span id="cb20-17"><a href="#cb20-17" tabindex="-1"></a><span class="co">#&gt; 11  34757</span></span>
<span id="cb20-18"><a href="#cb20-18" tabindex="-1"></a><span class="co">#&gt; 12  25630</span></span>
<span id="cb20-19"><a href="#cb20-19" tabindex="-1"></a><span class="co">#&gt; 13  29146</span></span>
<span id="cb20-20"><a href="#cb20-20" tabindex="-1"></a><span class="co">#&gt; 14  25752</span></span>
<span id="cb20-21"><a href="#cb20-21" tabindex="-1"></a><span class="co">#&gt; 15  26806</span></span>
<span id="cb20-22"><a href="#cb20-22" tabindex="-1"></a><span class="co">#&gt; 16  34368</span></span>
<span id="cb20-23"><a href="#cb20-23" tabindex="-1"></a><span class="co">#&gt; 17  26914</span></span>
<span id="cb20-24"><a href="#cb20-24" tabindex="-1"></a><span class="co">#&gt; 18  25886</span></span>
<span id="cb20-25"><a href="#cb20-25" tabindex="-1"></a><span class="co">#&gt; 19  29321</span></span>
<span id="cb20-26"><a href="#cb20-26" tabindex="-1"></a><span class="co">#&gt; 20  29571</span></span>
<span id="cb20-27"><a href="#cb20-27" tabindex="-1"></a><span class="co">#&gt; </span></span>
<span id="cb20-28"><a href="#cb20-28" tabindex="-1"></a><span class="co">#&gt; $counties</span></span>
<span id="cb20-29"><a href="#cb20-29" tabindex="-1"></a><span class="co">#&gt;   median_income</span></span>
<span id="cb20-30"><a href="#cb20-30" tabindex="-1"></a><span class="co">#&gt; 1         46083</span></span>
<span id="cb20-31"><a href="#cb20-31" tabindex="-1"></a><span class="co">#&gt; 2         56732</span></span>
<span id="cb20-32"><a href="#cb20-32" tabindex="-1"></a><span class="co">#&gt; 3         72785</span></span>
<span id="cb20-33"><a href="#cb20-33" tabindex="-1"></a><span class="co">#&gt; 4         58664</span></span>
<span id="cb20-34"><a href="#cb20-34" tabindex="-1"></a><span class="co">#&gt; 5         43788</span></span>
<span id="cb20-35"><a href="#cb20-35" tabindex="-1"></a><span class="co">#&gt; 6         44120</span></span>
<span id="cb20-36"><a href="#cb20-36" tabindex="-1"></a><span class="co">#&gt; 7         49153</span></span>
<span id="cb20-37"><a href="#cb20-37" tabindex="-1"></a><span class="co">#&gt; 8         69674</span></span></code></pre></div>
</div>
<div id="long-strings-strl-and-binary-data" class="section level3">
<h3>Long Strings (strL) and Binary Data</h3>
<p>Stata 13 introduced “long strings” (<code>strL</code>), capable of
storing very large text values. These are stored separately from the
main data matrix in the dta file, with only a reference kept in the data
part. <code>readstata13</code> handles these; by default, they are read
into R character vectors.</p>
<p>Interestingly, Stata also allows embedding binary data (like images,
audio, or other files) within <code>strL</code> variables.<a href="#fn5" class="footnote-ref" id="fnref5"><sup>5</sup></a> While R’s standard
data structures aren’t ideal for directly handling such embedded binary
data within a data frame,<a href="#fn6" class="footnote-ref" id="fnref6"><sup>6</sup></a> <code>readstata13</code> version
<code>0.9.1</code> and later provides the <code>strlexport</code> option
to extract these binary contents to files.</p>
<p>Using <code>strlexport = TRUE</code> and specifying a path with
<code>strlpath</code>, you can save the contents of <code>strL</code>
variables as separate files in a designated directory.</p>
<div class="sourceCode" id="cb21"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" tabindex="-1"></a><span class="co"># Create a directory for exporting strLs</span></span>
<span id="cb21-2"><a href="#cb21-2" tabindex="-1"></a><span class="fu">dir.create</span>(<span class="st">&quot;res/strls/&quot;</span>)</span>
<span id="cb21-3"><a href="#cb21-3" tabindex="-1"></a></span>
<span id="cb21-4"><a href="#cb21-4" tabindex="-1"></a><span class="co"># Read a dta file containing strLs and export their content</span></span>
<span id="cb21-5"><a href="#cb21-5" tabindex="-1"></a>dat_strl <span class="ot">&lt;-</span> <span class="fu">read.dta13</span>(<span class="st">&quot;stata_strl.dta&quot;</span>, </span>
<span id="cb21-6"><a href="#cb21-6" tabindex="-1"></a>                       <span class="at">strlexport =</span> <span class="cn">TRUE</span>, </span>
<span id="cb21-7"><a href="#cb21-7" tabindex="-1"></a>                       <span class="at">strlpath =</span> <span class="st">&quot;res/strls/&quot;</span>)</span>
<span id="cb21-8"><a href="#cb21-8" tabindex="-1"></a></span>
<span id="cb21-9"><a href="#cb21-9" tabindex="-1"></a><span class="co"># List the files created in the export directory.</span></span>
<span id="cb21-10"><a href="#cb21-10" tabindex="-1"></a><span class="co"># The filenames indicate the variable and observation index (e.g., 15_1).</span></span>
<span id="cb21-11"><a href="#cb21-11" tabindex="-1"></a><span class="fu">dir</span>(<span class="st">&quot;res/strls/&quot;</span>)</span>
<span id="cb21-12"><a href="#cb21-12" tabindex="-1"></a><span class="co">#&gt; [1] &quot;15_1&quot; &quot;16_1&quot;</span></span></code></pre></div>
<p>The exported files do not have extensions because the file type is
not inherently known from the <code>strL</code> data itself (and could
vary cell by cell). The user is responsible for determining the correct
file type and processing the content. In this example, the first
exported file (<code>15_1</code>) is a text file.</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" tabindex="-1"></a><span class="co"># Read the content of the text file strL export</span></span>
<span id="cb22-2"><a href="#cb22-2" tabindex="-1"></a><span class="fu">readLines</span>(<span class="st">&quot;res/strls/15_1&quot;</span>)</span>
<span id="cb22-3"><a href="#cb22-3" tabindex="-1"></a><span class="co">#&gt; [1] &quot;R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.&quot;</span></span>
<span id="cb22-4"><a href="#cb22-4" tabindex="-1"></a><span class="co">#&gt; [2] &quot;&quot;                                                                                                                                                                                                              </span></span>
<span id="cb22-5"><a href="#cb22-5" tabindex="-1"></a><span class="co">#&gt; [3] &quot;If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.&quot;                   </span></span>
<span id="cb22-6"><a href="#cb22-6" tabindex="-1"></a><span class="co">#&gt; [4] &quot;&quot;</span></span></code></pre></div>
<p>The second file (<code>16_1</code>) is a PNG image. You can read and
display it using appropriate R packages like <code>png</code> and
<code>grid</code>.</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" tabindex="-1"></a><span class="fu">library</span>(png)</span>
<span id="cb23-2"><a href="#cb23-2" tabindex="-1"></a><span class="fu">library</span>(grid) <span class="co"># grid is needed for grid.raster</span></span>
<span id="cb23-3"><a href="#cb23-3" tabindex="-1"></a></span>
<span id="cb23-4"><a href="#cb23-4" tabindex="-1"></a><span class="co"># Read the PNG image file</span></span>
<span id="cb23-5"><a href="#cb23-5" tabindex="-1"></a>img <span class="ot">&lt;-</span> <span class="fu">readPNG</span>(<span class="st">&quot;res/strls/16_1&quot;</span>)</span>
<span id="cb23-6"><a href="#cb23-6" tabindex="-1"></a></span>
<span id="cb23-7"><a href="#cb23-7" tabindex="-1"></a><span class="co"># Display the image</span></span>
<span id="cb23-8"><a href="#cb23-8" tabindex="-1"></a>grid<span class="sc">::</span><span class="fu">grid.raster</span>(img)</span></code></pre></div>
<p><img role="img" aria-label="Display of the R logo extracted from a long string." src="" alt="Display of the R logo extracted from a long string." /></p>
</div>
</div>
<div class="footnotes footnotes-end-of-document">
<hr />
<ol>
<li id="fn1"><p>The dta format for current versions is well documented
at <a href="https://www.stata.com/help.cgi?dta" class="uri">https://www.stata.com/help.cgi?dta</a> and also in the
corresponding manuals.<a href="#fnref1" class="footnote-back">↩︎</a></p></li>
<li id="fn2"><p>A detailed explanation can be found here: <a href="https://en.wikipedia.org/wiki/Endianness" class="uri">https://en.wikipedia.org/wiki/Endianness</a>.<a href="#fnref2" class="footnote-back">↩︎</a></p></li>
<li id="fn3"><p>A <a href="https://github.com/sjewo/readstata13/tree/116">development
branch</a> on GitHub even include support for the rarely seen
<code>116</code> format, for which only one public sample file is known
to exist.<a href="#fnref3" class="footnote-back">↩︎</a></p></li>
<li id="fn4"><p>The SOEP is currently located at the <a href="https://www.diw.de/">DIW Berlin</a>.<a href="#fnref4" class="footnote-back">↩︎</a></p></li>
<li id="fn5"><p>A Stata blog post illustrates this feature, showing how
physicians could store X-ray images alongside patient data: <a href="https://www.stata.com/stata-news/news31-4/spotlight/">“In the
spotlight: Storing long strings and entire files in Stata
datasets”</a>.<a href="#fnref5" class="footnote-back">↩︎</a></p></li>
<li id="fn6"><p>The challenge lies in R’s vector types; standard
character vectors aren’t designed for arbitrary binary data, and there’s
no native vector type for image processing or other binary formats
within a data frame context. This also means <code>readstata13</code>
currently cannot create dta files <em>with</em> embedded binary data
from R.<a href="#fnref6" class="footnote-back">↩︎</a></p></li>
</ol>
</div>



<!-- code folding -->


<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
  (function () {
    var script = document.createElement("script");
    script.type = "text/javascript";
    script.src  = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
    document.getElementsByTagName("head")[0].appendChild(script);
  })();
</script>

</body>
</html>