File: read_excel.R

package info (click to toggle)
r-cran-readxl 1.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,044 kB
  • sloc: ansic: 4,854; cpp: 3,213; makefile: 2
file content (348 lines) | stat: -rw-r--r-- 12,377 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#' @useDynLib readxl, .registration = TRUE
NULL

#' Read xls and xlsx files
#'
#' @param path Path to the xls/xlsx file.
#' @param sheet Sheet to read. Either a string (the name of a sheet), or an
#'   integer (the position of the sheet). Ignored if the sheet is specified via
#'   `range`. If neither argument specifies the sheet, defaults to the first
#'   sheet.
#' @param range A cell range to read from, as described in [cell-specification].
#'   Includes typical Excel ranges like "B3:D87", possibly including the sheet
#'   name like "Budget!B2:G14", and more. Interpreted strictly, even if the
#'   range forces the inclusion of leading or trailing empty rows or columns.
#'   Takes precedence over `skip`, `n_max` and `sheet`.
#' @param col_names `TRUE` to use the first row as column names, `FALSE` to get
#'   default names, or a character vector giving a name for each column. If user
#'   provides `col_types` as a vector, `col_names` can have one entry per
#'   column, i.e. have the same length as `col_types`, or one entry per
#'   unskipped column.
#' @param col_types Either `NULL` to guess all from the spreadsheet or a
#'   character vector containing one entry per column from these options:
#'   "skip", "guess", "logical", "numeric", "date", "text" or "list". If exactly
#'   one `col_type` is specified, it will be recycled. The content of a cell in
#'   a skipped column is never read and that column will not appear in the data
#'   frame output. A list cell loads a column as a list of length 1 vectors,
#'   which are typed using the type guessing logic from `col_types = NULL`, but
#'   on a cell-by-cell basis.
#' @param na Character vector of strings to interpret as missing values. By
#'   default, readxl treats blank cells as missing data.
#' @param trim_ws Should leading and trailing whitespace be trimmed?
#' @param skip Minimum number of rows to skip before reading anything, be it
#'   column names or data. Leading empty rows are automatically skipped, so this
#'   is a lower bound. Ignored if `range` is given.
#' @param n_max Maximum number of data rows to read. Trailing empty rows are
#'   automatically skipped, so this is an upper bound on the number of rows in
#'   the returned tibble. Ignored if `range` is given.
#' @param guess_max Maximum number of data rows to use for guessing column
#'   types.
#' @param progress Display a progress spinner? By default, the spinner appears
#'   only in an interactive session, outside the context of knitting a document,
#'   and when the call is likely to run for several seconds or more. See
#'   [readxl_progress()] for more details.
#' @param .name_repair Handling of column names. Passed along to
#'   [tibble::as_tibble()]. readxl's default is `.name_repair = "unique", which
#'   ensures column names are not empty and are unique.
#' @return A [tibble][tibble::tibble-package]
#' @seealso [cell-specification] for more details on targetting cells with the
#'   `range` argument
#' @export
#' @examples
#' datasets <- readxl_example("datasets.xlsx")
#' read_excel(datasets)
#'
#' # Specify sheet either by position or by name
#' read_excel(datasets, 2)
#' read_excel(datasets, "mtcars")
#'
#' # Skip rows and use default column names
#' read_excel(datasets, skip = 10, col_names = FALSE)
#'
#' # Recycle a single column type
#' read_excel(datasets, col_types = "text")
#'
#' # Specify some col_types and guess others
#' read_excel(
#'   readxl_example("deaths.xlsx"),
#'   skip = 4, n_max = 10, col_names = TRUE,
#'   col_types = c("text", "text", "guess", "guess", "guess", "guess")
#' )
#'
#' # Accomodate a column with disparate types via col_type = "list"
#' df <- read_excel(readxl_example("clippy.xlsx"), col_types = c("text", "list"))
#' df
#' df$value
#' sapply(df$value, class)
#'
#' # Limit the number of data rows read
#' read_excel(datasets, n_max = 3)
#'
#' # Read from an Excel range using A1 or R1C1 notation
#' read_excel(datasets, range = "C1:E7")
#' read_excel(datasets, range = "R1C2:R2C5")
#'
#' # Specify the sheet as part of the range
#' read_excel(datasets, range = "mtcars!B1:D5")
#'
#' # Read only specific rows or columns
#' read_excel(datasets, range = cell_rows(102:151), col_names = FALSE)
#' read_excel(datasets, range = cell_cols("B:D"))
#'
#' # Get a preview of column names
#' names(read_excel(readxl_example("datasets.xlsx"), n_max = 0))
#'
#' # exploit full .name_repair flexibility from tibble
#'
#' # "universal" names are unique and syntactic
#' read_excel(
#'   readxl_example("deaths.xlsx"),
#'   range = "arts!A5:F15",
#'   .name_repair = "universal"
#' )
#'
#' # specify name repair as a built-in function
#' read_excel(readxl_example("clippy.xlsx"), .name_repair = toupper)
#'
#' # specify name repair as a custom function
#' my_custom_name_repair <- function(nms) tolower(gsub("[.]", "_", nms))
#' read_excel(
#'   readxl_example("datasets.xlsx"),
#'   .name_repair = my_custom_name_repair
#' )
#'
#' # specify name repair as an anonymous function
#' read_excel(
#'   readxl_example("datasets.xlsx"),
#'   sheet = "chickwts",
#'   .name_repair = ~ substr(.x, start = 1, stop = 3)
#' )
read_excel <- function(path, sheet = NULL, range = NULL,
                       col_names = TRUE, col_types = NULL,
                       na = "", trim_ws = TRUE, skip = 0, n_max = Inf,
                       guess_max = min(1000, n_max),
                       progress = readxl_progress(),
                       .name_repair = "unique") {
  path <- check_file(path)
  format <- check_format(path)
  read_excel_(
    path = path, sheet = sheet, range = range,
    col_names = col_names, col_types = col_types,
    na = na, trim_ws = trim_ws, skip = skip,
    n_max = n_max, guess_max = guess_max,
    progress = progress,
    .name_repair = .name_repair,
    format = format
  )
}

#' `read_excel()` calls [excel_format()] to determine if `path` is xls or xlsx,
#' based on the file extension and the file itself, in that order. Use
#' `read_xls()` and `read_xlsx()` directly if you know better and want to
#' prevent such guessing.
#' @rdname read_excel
#' @export
read_xls <- function(path, sheet = NULL, range = NULL,
                     col_names = TRUE, col_types = NULL,
                     na = "", trim_ws = TRUE, skip = 0, n_max = Inf,
                     guess_max = min(1000, n_max),
                     progress = readxl_progress(),
                     .name_repair = "unique") {
  path <- check_file(path)
  read_excel_(
    path = path, sheet = sheet, range = range,
    col_names = col_names, col_types = col_types,
    na = na, trim_ws = trim_ws, skip = skip,
    n_max = n_max, guess_max = guess_max,
    progress = progress,
    .name_repair = .name_repair,
    format = "xls"
  )
}

#' @rdname read_excel
#' @export
read_xlsx <- function(path, sheet = NULL, range = NULL,
                      col_names = TRUE, col_types = NULL,
                      na = "", trim_ws = TRUE, skip = 0, n_max = Inf,
                      guess_max = min(1000, n_max),
                      progress = readxl_progress(),
                      .name_repair = "unique") {
  path <- check_file(path)
  read_excel_(
    path = path, sheet = sheet, range = range,
    col_names = col_names, col_types = col_types,
    na = na, trim_ws = trim_ws, skip = skip,
    n_max = n_max, guess_max = guess_max,
    progress = progress,
    .name_repair = .name_repair,
    format = "xlsx"
  )
}

read_excel_ <- function(path, sheet = NULL, range = NULL,
                        col_names = TRUE, col_types = NULL,
                        na = "", trim_ws = TRUE, skip = 0, n_max = Inf,
                        guess_max = min(1000, n_max),
                        progress = readxl_progress(),
                        .name_repair = NULL,
                        format) {
  if (format == "xls") {
    sheets_fun <- xls_sheets
    read_fun <- read_xls_
  } else {
    sheets_fun <- xlsx_sheets
    read_fun <- read_xlsx_
  }
  path <- normalizePath(path)
  sheet <- standardise_sheet(sheet, range, sheets_fun(path))
  shim <- !is.null(range)
  limits <- standardise_limits(
    range, skip, n_max, has_col_names = isTRUE(col_names)
  )
  col_types <- check_col_types(col_types)
  guess_max <- check_guess_max(guess_max)
  trim_ws <- check_bool(trim_ws, "trim_ws")
  progress <- check_bool(progress, "progress")
  set_readxl_names(
    read_fun(
      path = path, sheet_i = sheet,
      limits = limits, shim = shim,
      col_names = col_names, col_types = col_types,
      na = na, trim_ws = trim_ws, guess_max = guess_max,
      progress = progress
    ),
    .name_repair = .name_repair
  )
}

# Helper functions -------------------------------------------------------------

## return a zero-indexed sheet number
standardise_sheet <- function(sheet, range, sheet_names) {
  range_sheet <- cellranger::as.cell_limits(range)[["sheet"]]
  if (!is.null(range_sheet) && !is.na(range_sheet)) {
    if (!is.null(sheet)) {
      message(
        "Two values given for `sheet`. ",
        "Using the `sheet` found in `range`:\n", range_sheet
      )
    }
    sheet <- range_sheet
  }

  if (is.null(sheet)) {
    sheet <- 1L
  }

  if (length(sheet) != 1) {
    stop("`sheet` must have length 1", call. = FALSE)
  }

  if (is.numeric(sheet)) {
    if (sheet < 1) {
      stop("`sheet` must be positive", call. = FALSE)
    }
    floor(sheet) - 1L
  } else if (is.character(sheet)) {
    if (!(sheet %in% sheet_names)) {
      stop("Sheet '", sheet, "' not found", call. = FALSE)
    }
    match(sheet, sheet_names) - 1L
  } else {
    stop("`sheet` must be either an integer or a string.", call. = FALSE)
  }
}

## return a zero-indexed vector describing the corners of a cell rectangle:
## min_row, max_row, min_col, max_col
## NA becomes -1 and means "unspecified", by convention
## if both min and max are -1, for rows or cols, means "read them all"
## min_row = -2 is a special flag meaning "read no rows"
standardise_limits <- function(range, skip, n_max, has_col_names) {
  if (is.null(range)) {
    skip <- check_non_negative_integer(skip, "skip")
    n_max <- check_non_negative_integer(n_max, "n_max")
    n_read <- if (has_col_names) n_max + 1 else n_max
    limits <- c(
      min_row = if (n_read > 0) skip else -2,
      max_row = if (n_read == Inf || n_read == 0) NA else skip + n_read - 1,
      min_col = NA,
      max_col = NA
    )
  } else {
    limits <- cellranger::as.cell_limits(range)
    limits <- c(
      min_row = limits[["ul"]][1] - 1,
      max_row = limits[["lr"]][1] - 1,
      min_col = limits[["ul"]][2] - 1,
      max_col = limits[["lr"]][2] - 1
    )
  }
  limits[is.na(limits)] <- -1
  names <- names(limits)
  limits <- as.integer(limits)
  names(limits) <- names
  limits
}

check_col_types <- function(col_types) {
  if (is.null(col_types)) {
    return("guess")
  }
  stopifnot(is.character(col_types), length(col_types) > 0, !anyNA(col_types))

  blank <- col_types == "blank"
  if (any(blank)) {
    message("`col_type = \"blank\"` deprecated. Use \"skip\" instead.")
    col_types[blank] <- "skip"
  }

  accepted_types <-
    c("skip", "guess", "logical", "numeric", "date", "text", "list")
  ok <- col_types %in% accepted_types
  if (any(!ok)) {
    info <- paste(
      paste0("'", col_types[!ok], "' [", seq_along(col_types)[!ok], "]"),
      collapse = ", "
    )
    stop(paste("Illegal column type:", info), call. = FALSE)
  }
  col_types
}

check_bool <- function(bool, arg_name) {
  if (!isTRUE(bool) && !identical(bool, FALSE)) {
    stop("`", arg_name, "` must be either TRUE or FALSE", call. = FALSE)
  }
  bool
}

check_non_negative_integer <- function(i, arg_name) {
  if (length(i) != 1 || !is.numeric(i) || !is_integerish(i) ||
    is.na(i) || i < 0) {
    stop("`", arg_name, "` must be a positive integer", call. = FALSE)
  }
  i
}

## from readr
check_guess_max <- function(guess_max, max_limit = .Machine$integer.max %/% 100) {
  guess_max <- check_non_negative_integer(guess_max, "guess_max")
  if (guess_max > max_limit) {
    warning(
      "`guess_max` is a very large value, setting to `", max_limit,
      "` to avoid exhausting memory", call. = FALSE
    )
    guess_max <- max_limit
  }
  guess_max
}

set_readxl_names <- function(l, .name_repair = "unique") {
  if (is.null(.name_repair)) {
    tibble::as_tibble(l)
  } else {
    tibble::as_tibble(l, .name_repair = .name_repair)
  }
}