File: class.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (235 lines) | stat: -rw-r--r-- 7,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#' Check Variable Class
#'
#' `check_class` creates a *specification* of a recipe
#'  check that will check if a variable is of a designated class.
#'
#' @param recipe A recipe object. The check will be added to the
#'  sequence of operations for this recipe.
#' @param ... One or more selector functions to choose which
#'  variables are affected by the check. See [selections()]
#'  for more details. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this check since no new variables are
#'  created.
#' @param trained A logical to indicate if the quantities for
#'  preprocessing have been estimated.
#' @param skip A logical. Should the check be skipped when the
#'  recipe is baked by [bake.recipe()]? While all operations are baked
#'  when [prep.recipe()] is run, some operations may not be able to be
#'  conducted on new data (e.g. processing the outcome variable(s)).
#'  Care should be taken when using `skip = TRUE` as it may affect
#'  the computations for subsequent operations.
#' @param class_nm A character vector that will be used in `inherits` to
#'  check the class. If `NULL` the classes will be learned in `prep`.
#'  Can contain more than one class.
#' @param allow_additional If `TRUE` a variable is allowed to
#'  have additional classes to the one(s) that are checked.
#' @param class_list A named list of column classes. This is
#'  `NULL` until computed by [prep.recipe()].
#' @param id A character string that is unique to this step to identify it.
#' @return An updated version of `recipe` with the new check
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  selectors or variables selected) and `value` (the type).
#'
#' @keywords datagen
#' @concept preprocessing normalization_methods
#' @export
#' @details
#' This function can check the classes of the variables
#'  in two ways. When the `class` argument is provided
#'  it will check if all the variables specified are of the
#'  given class. If this argument is `NULL`, the check will
#'  learn the classes of each of the specified variables in `prep`.
#'  Both ways will break `bake` if the variables are not of
#'  the requested class. If a variable has multiple
#'  classes in `prep`, all the classes are checked. Please note
#'  that in `prep` the argument `strings_as_factors` defaults to
#'  `TRUE`. If the train set contains character variables
#'  the check will be break `bake` when `strings_as_factors` is
#'  `TRUE`.
#' @examples
#' library(dplyr)
#' library(modeldata)
#' data(okc)
#'
#' # Learn the classes on the train set
#' train <- okc[1:1000, ]
#' test  <- okc[1001:2000, ]
#' recipe(train, age ~ . ) %>%
#'   check_class(everything()) %>%
#'   prep(train, strings_as_factors = FALSE) %>%
#'   bake(test)
#'
#' # Manual specification
#' recipe(train, age ~ .) %>%
#'   check_class(age, class_nm = "integer") %>%
#'   check_class(diet, location, class_nm = "character") %>%
#'   check_class(date, class_nm = "Date") %>%
#'   prep(train, strings_as_factors = FALSE) %>%
#'   bake(test)
#'
#' # By default only the classes that are specified
#' #   are allowed.
#' x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
#' x_df$time %>% class()
#' \dontrun{
#' recipe(x_df) %>%
#'   check_class(time, class_nm = "POSIXt") %>%
#'   prep(x_df) %>%
#'   bake_(x_df)
#' }
#'
#' # Use allow_additional = TRUE if you are fine with it
#' recipe(x_df) %>%
#'   check_class(time, class_nm = "POSIXt", allow_additional = TRUE) %>%
#'   prep(x_df) %>%
#'   bake(x_df)
#'
#' @seealso [recipe()] [prep.recipe()]
#'   [bake.recipe()]
check_class <-
  function(recipe,
           ...,
           role = NA,
           trained  = FALSE,
           class_nm = NULL,
           allow_additional = FALSE,
           skip = FALSE,
           class_list = NULL,
           id = rand_id("class")) {
    add_check(
      recipe,
      check_class_new(
        terms            = ellipse_check(...),
        trained          = trained,
        role             = role,
        class_nm         = class_nm,
        allow_additional = allow_additional,
        class_list       = class_list,
        skip             = skip,
        id               = id
      )
    )
  }

## Initializes a new object
check_class_new <-
  function(terms, role, trained, class_nm,
           allow_additional, class_list, skip, id) {
    check(
      subclass         = "class",
      terms            = terms,
      role             = role,
      skip             = skip,
      trained          = trained,
      class_nm         = class_nm,
      allow_additional = allow_additional,
      class_list       = class_list,
      skip             = skip,
      id               = id
    )
  }

prep.check_class <- function(x,
                             training,
                             info = NULL,
                             ...) {
  col_names <- eval_select_recipes(x$terms, training, info)

  # vapply requires a very specific return here
  # class can give back multiple values, return shape
  # is not predetermined. Thats why we use lapply instead.
  if (is.null(x$class_nm)) {
    class_list <- lapply(training[ ,col_names], class)
  } else {
    class_list <- rep(list(x$class_nm), length(col_names))
    names(class_list) <- col_names
  }

  check_class_new(
    terms            = x$terms,
    role             = x$role,
    skip             = x$skip,
    trained          = TRUE,
    class_nm         = x$class_nm,
    allow_additional = x$allow_additional,
    class_list       = class_list,
    id               = x$id
  )
}

# we don't use inherits() because class_nm
# can be of length > 1. inherits will result
# in TRUE if just one of the classes in class_nm
# is present in x.
bake_check_class_core <- function(x,
                                  class_nm,
                                  var_nm,
                                  aa = FALSE) {
  classes <- class(x)
  missing <- setdiff(class_nm, classes)
  if (length(missing) > 0) {
    rlang::abort(
      paste0(
        var_nm,
        " should have the class(es) ",
        paste(class_nm, collapse = ", "),
        " but has the class(es) ",
        paste(classes, collapse = ", "),
        "."
    )
    )
  }

  extra <- setdiff(classes, class_nm)
  if (length(extra) > 0 && !aa) {
    rlang::abort(
      paste0(
        var_nm,
        " has the class(es) ",
        paste(classes, collapse = ", "),
        ", but only the following is/are asked ",
        paste(class_nm, collapse = ", "),
        ", allow_additional is FALSE."
      )
    )
  }
}

bake.check_class <- function(object,
                             new_data,
                             ...) {

  col_names <- names(object$class_list)
  mapply(bake_check_class_core,
         new_data[ ,col_names],
         object$class_list,
         col_names,
         aa = object$allow_additional)

  as_tibble(new_data)
}

print.check_class <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Checking the class(es) for ", sep = "")
    printer(names(x$class_list), x$terms, x$trained, width = width)
    invisible(x)
  }


#' @rdname check_class
#' @param x A `check_class` object.
tidy.check_class <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = names(x$class_list),
                  value = sapply(x$class_list,
                                 function(x) paste0(x, collapse = "-")))
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names,
                  value = na_chr)
  }
  res
}