File: classdist.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (243 lines) | stat: -rw-r--r-- 7,429 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#' Distances to Class Centroids
#'
#' `step_classdist` creates a *specification* of a
#'  recipe step that will convert numeric data into Mahalanobis
#'  distance measurements to the data centroid. This is done for
#'  each value of a categorical class variable.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#'  variables are affected by the step. See [selections()]
#'  for more details. For the `tidy` method, these are not
#'  currently used.
#' @param class A single character string that specifies a single
#'  categorical variable to be used as the class.
#' @param role For model terms created by this step, what analysis
#'  role should they be assigned?. By default, the function assumes
#'  that resulting distances will be used as predictors in a model.
#' @param mean_func A function to compute the center of the
#'  distribution.
#' @param cov_func A function that computes the covariance matrix
#' @param pool A logical: should the covariance matrix be computed
#'  by pooling the data for all of the classes?
#' @param log A logical: should the distances be transformed by
#'  the natural log function?
#' @param prefix A character string that defines the naming convention for
#'  new distance columns. Defaults to `"classdist_"`. See Details below.
#' @param objects Statistics are stored here once this step has
#'  been trained by [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  selectors or variables selected), `value` (the centroid of
#'  the class), and `class`.
#' @keywords datagen
#' @concept preprocessing
#' @concept dimension_reduction
#' @export
#' @details `step_classdist` will create a new column for every
#'  unique value of the `class` variable.
#'  The resulting variables will not replace the original values
#'  and by default have the prefix `classdist_`. The naming format can be
#'  changed using the `prefix` argument.
#'
#' Note that, by default, the default covariance function requires
#'  that each class should have at least as many rows as variables
#'  listed in the `terms` argument. If `pool = TRUE`,
#'  there must be at least as many data points are variables
#'  overall.
#' @examples
#'
#' # in case of missing data...
#' mean2 <- function(x) mean(x, na.rm = TRUE)
#'
#' # define naming convention
#' rec <- recipe(Species ~ ., data = iris) %>%
#'   step_classdist(all_predictors(), class = "Species",
#'                  pool = FALSE, mean_func = mean2, prefix = "centroid_")
#'
#' # default naming
#' rec <- recipe(Species ~ ., data = iris) %>%
#'   step_classdist(all_predictors(), class = "Species",
#'                  pool = FALSE, mean_func = mean2)
#'
#' rec_dists <- prep(rec, training = iris)
#'
#' dists_to_species <- bake(rec_dists, new_data = iris, everything())
#' ## on log scale:
#' dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
#' dists_to_species[, c("Species", dist_cols)]
#'
#' tidy(rec, number = 1)
#' tidy(rec_dists, number = 1)
step_classdist <- function(recipe,
                           ...,
                           class,
                           role = "predictor",
                           trained = FALSE,
                           mean_func = mean,
                           cov_func = cov,
                           pool = FALSE,
                           log = TRUE,
                           objects = NULL,
                           prefix = "classdist_",
                           skip = FALSE,
                           id = rand_id("classdist")) {
  if (!is.character(class) || length(class) != 1)
    rlang::abort("`class` should be a single character value.")
  add_step(
    recipe,
    step_classdist_new(
      terms = ellipse_check(...),
      class = class,
      role = role,
      trained = trained,
      mean_func = mean_func,
      cov_func = cov_func,
      pool = pool,
      log = log,
      objects = objects,
      prefix = prefix,
      skip = skip,
      id = id
    )
  )
}

step_classdist_new <-
  function(terms, class, role, trained, mean_func,
           cov_func, pool, log, objects, prefix, skip, id) {
    step(
      subclass = "classdist",
      terms = terms,
      class = class,
      role = role,
      trained = trained,
      mean_func = mean_func,
      cov_func = cov_func,
      pool = pool,
      log = log,
      objects = objects,
      prefix = prefix,
      skip = skip,
      id = id
    )
  }

get_center <- function(x, mfun = mean) {
  apply(x, 2, mfun)
}
get_both <- function(x, mfun = mean, cfun = cov) {
  list(center = get_center(x, mfun),
       scale = cfun(x))
}

#' @export
prep.step_classdist <- function(x, training, info = NULL, ...) {
  class_var <- x$class[1]
  x_names <- eval_select_recipes(x$terms, training, info)
  check_type(training[, x_names])

  x_dat <-
    split(training[, x_names], getElement(training, class_var))
  if (x$pool) {
    res <- list(
      center = lapply(x_dat, get_center, mfun = x$mean_func),
      scale = x$cov_func(training[, x_names])
    )

  } else {
    res <-
      lapply(x_dat,
             get_both,
             mfun = x$mean_func,
             cfun = x$cov_func)
  }
  step_classdist_new(
    terms = x$terms,
    class = x$class,
    role = x$role,
    trained = TRUE,
    mean_func = x$mean_func,
    cov_func = x$cov_func,
    pool = x$pool,
    log = x$log,
    objects = res,
    prefix = x$prefix,
    skip = x$skip,
    id = x$id
  )
}

mah_by_class <- function(param, x)
  mahalanobis(x, param$center, param$scale)

mah_pooled <- function(means, x, cov_mat)
  mahalanobis(x, means, cov_mat)


#' @export
bake.step_classdist <- function(object, new_data, ...) {
  if (object$pool) {
    x_cols <- names(object$objects[["center"]][[1]])
    res <- lapply(
      object$objects$center,
      mah_pooled,
      x = new_data[, x_cols],
      cov_mat = object$objects$scale
    )
  } else {
    x_cols <- names(object$objects[[1]]$center)
    res <-
      lapply(object$objects, mah_by_class, x = new_data[, x_cols])
  }
  if (object$log)
    res <- lapply(res, log)
  res <- as_tibble(res)
  newname <- paste0(object$prefix, colnames(res))
  res <- check_name(res, new_data, object, newname)
  res <- bind_cols(new_data, res)
  if (!is_tibble(res))
    res <- as_tibble(res)
  res
}

print.step_classdist <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Distances to", x$class, "for ")
    if (x$trained) {
      x_names <- if (x$pool)
        names(x$objects[["center"]][[1]])
      else
        names(x$objects[[1]]$center)
    } else x_names <- NULL
    printer(x_names, x$terms, x$trained, width = width)
    invisible(x)
  }



get_centroid <- function(x) {
  tibble(terms = names(x$center),
         value = unname(x$center))
}

#' @rdname step_classdist
#' @param x A `step_classdist` object.
#' @export
tidy.step_classdist <- function(x, ...) {
  if (is_trained(x)) {
    centroids <- lapply(x$objects, get_centroid)
    num_rows <- vapply(centroids, nrow, numeric(1))
    classes <- rep(names(centroids), num_rows)
    res <- dplyr::bind_rows(centroids)
    res$class <- classes
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names,
                  value = na_dbl,
                  class = na_chr)
  }
  res$id <- x$id
  res
}