1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
#' Distances to Class Centroids
#'
#' `step_classdist` creates a *specification* of a
#' recipe step that will convert numeric data into Mahalanobis
#' distance measurements to the data centroid. This is done for
#' each value of a categorical class variable.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param class A single character string that specifies a single
#' categorical variable to be used as the class.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned?. By default, the function assumes
#' that resulting distances will be used as predictors in a model.
#' @param mean_func A function to compute the center of the
#' distribution.
#' @param cov_func A function that computes the covariance matrix
#' @param pool A logical: should the covariance matrix be computed
#' by pooling the data for all of the classes?
#' @param log A logical: should the distances be transformed by
#' the natural log function?
#' @param prefix A character string that defines the naming convention for
#' new distance columns. Defaults to `"classdist_"`. See Details below.
#' @param objects Statistics are stored here once this step has
#' been trained by [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected), `value` (the centroid of
#' the class), and `class`.
#' @keywords datagen
#' @concept preprocessing
#' @concept dimension_reduction
#' @export
#' @details `step_classdist` will create a new column for every
#' unique value of the `class` variable.
#' The resulting variables will not replace the original values
#' and by default have the prefix `classdist_`. The naming format can be
#' changed using the `prefix` argument.
#'
#' Note that, by default, the default covariance function requires
#' that each class should have at least as many rows as variables
#' listed in the `terms` argument. If `pool = TRUE`,
#' there must be at least as many data points are variables
#' overall.
#' @examples
#'
#' # in case of missing data...
#' mean2 <- function(x) mean(x, na.rm = TRUE)
#'
#' # define naming convention
#' rec <- recipe(Species ~ ., data = iris) %>%
#' step_classdist(all_predictors(), class = "Species",
#' pool = FALSE, mean_func = mean2, prefix = "centroid_")
#'
#' # default naming
#' rec <- recipe(Species ~ ., data = iris) %>%
#' step_classdist(all_predictors(), class = "Species",
#' pool = FALSE, mean_func = mean2)
#'
#' rec_dists <- prep(rec, training = iris)
#'
#' dists_to_species <- bake(rec_dists, new_data = iris, everything())
#' ## on log scale:
#' dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
#' dists_to_species[, c("Species", dist_cols)]
#'
#' tidy(rec, number = 1)
#' tidy(rec_dists, number = 1)
step_classdist <- function(recipe,
...,
class,
role = "predictor",
trained = FALSE,
mean_func = mean,
cov_func = cov,
pool = FALSE,
log = TRUE,
objects = NULL,
prefix = "classdist_",
skip = FALSE,
id = rand_id("classdist")) {
if (!is.character(class) || length(class) != 1)
rlang::abort("`class` should be a single character value.")
add_step(
recipe,
step_classdist_new(
terms = ellipse_check(...),
class = class,
role = role,
trained = trained,
mean_func = mean_func,
cov_func = cov_func,
pool = pool,
log = log,
objects = objects,
prefix = prefix,
skip = skip,
id = id
)
)
}
step_classdist_new <-
function(terms, class, role, trained, mean_func,
cov_func, pool, log, objects, prefix, skip, id) {
step(
subclass = "classdist",
terms = terms,
class = class,
role = role,
trained = trained,
mean_func = mean_func,
cov_func = cov_func,
pool = pool,
log = log,
objects = objects,
prefix = prefix,
skip = skip,
id = id
)
}
get_center <- function(x, mfun = mean) {
apply(x, 2, mfun)
}
get_both <- function(x, mfun = mean, cfun = cov) {
list(center = get_center(x, mfun),
scale = cfun(x))
}
#' @export
prep.step_classdist <- function(x, training, info = NULL, ...) {
class_var <- x$class[1]
x_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, x_names])
x_dat <-
split(training[, x_names], getElement(training, class_var))
if (x$pool) {
res <- list(
center = lapply(x_dat, get_center, mfun = x$mean_func),
scale = x$cov_func(training[, x_names])
)
} else {
res <-
lapply(x_dat,
get_both,
mfun = x$mean_func,
cfun = x$cov_func)
}
step_classdist_new(
terms = x$terms,
class = x$class,
role = x$role,
trained = TRUE,
mean_func = x$mean_func,
cov_func = x$cov_func,
pool = x$pool,
log = x$log,
objects = res,
prefix = x$prefix,
skip = x$skip,
id = x$id
)
}
mah_by_class <- function(param, x)
mahalanobis(x, param$center, param$scale)
mah_pooled <- function(means, x, cov_mat)
mahalanobis(x, means, cov_mat)
#' @export
bake.step_classdist <- function(object, new_data, ...) {
if (object$pool) {
x_cols <- names(object$objects[["center"]][[1]])
res <- lapply(
object$objects$center,
mah_pooled,
x = new_data[, x_cols],
cov_mat = object$objects$scale
)
} else {
x_cols <- names(object$objects[[1]]$center)
res <-
lapply(object$objects, mah_by_class, x = new_data[, x_cols])
}
if (object$log)
res <- lapply(res, log)
res <- as_tibble(res)
newname <- paste0(object$prefix, colnames(res))
res <- check_name(res, new_data, object, newname)
res <- bind_cols(new_data, res)
if (!is_tibble(res))
res <- as_tibble(res)
res
}
print.step_classdist <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Distances to", x$class, "for ")
if (x$trained) {
x_names <- if (x$pool)
names(x$objects[["center"]][[1]])
else
names(x$objects[[1]]$center)
} else x_names <- NULL
printer(x_names, x$terms, x$trained, width = width)
invisible(x)
}
get_centroid <- function(x) {
tibble(terms = names(x$center),
value = unname(x$center))
}
#' @rdname step_classdist
#' @param x A `step_classdist` object.
#' @export
tidy.step_classdist <- function(x, ...) {
if (is_trained(x)) {
centroids <- lapply(x$objects, get_centroid)
num_rows <- vapply(centroids, nrow, numeric(1))
classes <- rep(names(centroids), num_rows)
res <- dplyr::bind_rows(centroids)
res$class <- classes
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
value = na_dbl,
class = na_chr)
}
res$id <- x$id
res
}
|