File: discretize.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (381 lines) | stat: -rw-r--r-- 11,376 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#' Discretize Numeric Variables
#'
#' `discretize` converts a numeric vector into a factor with
#'  bins having approximately the same number of data points (based
#'  on a training set).
#'
#' @export
#' @param x A numeric vector
discretize <- function(x, ...)
  UseMethod("discretize")

#' @rdname discretize
discretize.default <- function(x, ...)
  rlang::abort("Only numeric `x` is accepted")

#' @rdname discretize
#' @param cuts An integer defining how many cuts to make of the
#'  data.
#' @param labels A character vector defining the factor levels
#'  that will be in the new factor (from smallest to largest). This
#'  should have length `cuts+1` and should not include a level
#'  for missing (see `keep_na` below).
#' @param prefix A single parameter value to be used as a prefix
#'  for the factor levels (e.g. `bin1`, `bin2`, ...). If
#'  the string is not a valid R name, it is coerced to one.
#' @param keep_na A logical for whether a factor level should be
#'  created to identify missing values in `x`.
#' @param infs A logical indicating whether the smallest and
#'  largest cut point should be infinite.
#' @param min_unique An integer defining a sample size line of
#'  dignity for the binning. If (the number of unique
#'  values)`/(cuts+1)` is less than `min_unique`, no
#'  discretization takes place.
#' @param ... Options to pass to
#'  [stats::quantile()] that should not include `x`
#'  or `probs`.
#' @return `discretize` returns an object of class
#'  `discretize` and `predict.discretize` returns a factor
#'  vector.
#' @keywords datagen
#' @concept preprocessing
#' @concept discretization
#' @concept factors
#' @export
#' @details `discretize` estimates the cut points from
#'  `x` using percentiles. For example, if `cuts = 3`, the
#'  function estimates the quartiles of `x` and uses these as
#'  the cut points. If `cuts = 2`, the bins are defined as
#'  being above or below the median of `x`.
#'
#' The `predict` method can then be used to turn numeric
#'  vectors into factor vectors.
#'
#' If `keep_na = TRUE`, a suffix of "_missing" is used as a
#'  factor level (see the examples below).
#'
#' If `infs = FALSE` and a new value is greater than the
#'  largest value of `x`, a missing value will result.
#'@examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' median(biomass_tr$carbon)
#' discretize(biomass_tr$carbon, cuts = 2)
#' discretize(biomass_tr$carbon, cuts = 2, infs = FALSE)
#' discretize(biomass_tr$carbon, cuts = 2, infs = FALSE, keep_na = FALSE)
#' discretize(biomass_tr$carbon, cuts = 2, prefix = "maybe a bad idea to bin")
#'
#' carbon_binned <- discretize(biomass_tr$carbon)
#' table(predict(carbon_binned, biomass_tr$carbon))
#'
#' carbon_no_infs <- discretize(biomass_tr$carbon, infs = FALSE)
#' predict(carbon_no_infs, c(50, 100))
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'               data = biomass_tr)
#' rec <- rec %>% step_discretize(carbon, hydrogen)
#' rec <- prep(rec, biomass_tr)
#' binned_te <- bake(rec, biomass_te)
#' table(binned_te$carbon)

discretize.numeric <-
  function(x,
           cuts = 4,
           labels = NULL,
           prefix = "bin",
           keep_na = TRUE,
           infs = TRUE,
           min_unique = 10,
           ...) {
    unique_vals <- length(unique(x))
    missing_lab <- "_missing"

    if (cuts < 2)
      rlang::abort("There should be at least 2 cuts")

    if (unique_vals / (cuts + 1) >= min_unique) {
      breaks <- quantile(x, probs = seq(0, 1, length = cuts + 1), ...)
      num_breaks <- length(breaks)
      breaks <- unique(breaks)
      if (num_breaks > length(breaks))
        rlang::warn(
          paste0(
          "Not enough data for ",
          cuts,
          " breaks. Only ",
          length(breaks),
          " breaks were used."
          )
        )
      if (infs) {
        breaks[1] <- -Inf
        breaks[length(breaks)] <- Inf
      }
      breaks <- unique(breaks)

      if (is.null(labels)) {
        prefix <- prefix[1]
        if (make.names(prefix) != prefix) {
          rlang::warn(paste0(
            "The prefix '",
            prefix,
            "' is not a valid R name. It has been changed to '",
            make.names(prefix),
            "'.")
          )
          prefix <- make.names(prefix)
        }
        labels <- names0(length(breaks) - 1, "")
      }
      out <- list(
        breaks = breaks,
        bins = length(breaks) - 1,
        prefix = prefix,
        labels =  if (keep_na)
          labels <- c(missing_lab, labels)
        else
          labels,
        keep_na = keep_na
      )
    } else {
      out <- list(bins = 0)
      rlang::warn(
        paste0(
          "Data not binned; too few unique values per bin. ",
          "Adjust 'min_unique' as needed"
        )
      )
    }
    class(out) <- "discretize"
    out
  }

#' @rdname discretize
#' @param object An object of class `discretize`.
#' @param new_data A new numeric object to be binned.
#' @export
predict.discretize <- function(object, new_data, ...) {
  if (is.matrix(new_data) |
      is.data.frame(new_data))
    new_data <- new_data[, 1]
  object$labels <- paste0(object$prefix, object$labels)
  if (object$bins >= 1) {
    labs <- if (object$keep_na)
      object$labels[-1]
    else
      object$labels
    out <-
      cut(new_data,
          object$breaks,
          labels = labs,
          include.lowest = TRUE)
    if (object$keep_na) {
      out <- as.character(out)
      if (any(is.na(new_data)))
        out[is.na(new_data)] <- object$labels[1]
      out <- factor(out, levels = object$labels)
    }
  } else
    out <- new_data

  out
}

#' @export
print.discretize <-
  function(x, digits = max(3L, getOption("digits") - 3L), ...) {
    if (length(x$breaks) > 0) {
      cat("Bins:", length(x$labels))
      if (any(grepl("_missing", x$labels)))
        cat(" (includes missing category)")
      cat("\n")

      if (length(x$breaks) <= 6) {
        cat("Breaks:",
            paste(signif(x$breaks, digits = digits), collapse = ", "))
      }
    } else {
      if (x$bins == 0)
        cat("Too few unique data points. No binning.")
      else
        cat("Non-numeric data. No binning was used.")
    }
  }

#' Discretize Numeric Variables
#'
#' `step_discretize` creates a *specification* of a recipe
#'  step that will convert numeric data into a factor with
#'  bins having approximately the same number of data points (based
#'  on a training set).
#'
#' @inheritParams step_center
#' @param role Not used by this step since no new variables are
#'  created.
#' @param num_breaks An integer defining how many cuts to make of the
#'  data.
#' @param min_unique An integer defining a sample size line of
#'  dignity for the binning. If (the number of unique
#'  values)`/(cuts+1)` is less than `min_unique`, no
#'  discretization takes place.
#' @param objects The [discretize()] objects are stored
#'  here once the recipe has be trained by
#'  [prep.recipe()].
#' @param options A list of options to [discretize()]. A
#'  default is set for the argument `x`. Note that using
#'  the options `prefix` and `labels` when more than one
#'  variable is being transformed might be problematic as all
#'  variables inherit those values.
#' @param ... For `step_discretize`, the dots specify
#'  one or more selector functions to choose which variables are
#'  affected by the step. See [selections()] for more
#'  details. For the `tidy` method, these are not currently
#'  used.
#' @return `step_discretize` returns an updated version of
#'  `recipe` with the new step added to the sequence of
#'  existing steps (if any). For the `tidy` method, a tibble
#'  with columns `terms` (the selectors or variables selected)
#'  and `value` (the breaks).
#' @export

step_discretize <- function(recipe,
                            ...,
                            role = NA,
                            trained = FALSE,
                            num_breaks = 4,
                            min_unique = 10,
                            objects = NULL,
                            options = list(),
                            skip = FALSE,
                            id = rand_id("discretize")) {

  if (any(names(options) %in% c("cuts", "min_unique"))) {
    num_breaks <- options$cuts
    min_unique <- options$min_unique
  }

  add_step(
    recipe,
    step_discretize_new(
      terms = ellipse_check(...),
      trained = trained,
      role = role,
      num_breaks = num_breaks,
      min_unique = min_unique,
      objects = objects,
      options = options,
      skip = skip,
      id = id
    )
  )
}

step_discretize_new <-
  function(terms, role, trained, objects, num_breaks, min_unique, options, skip, id) {
    step(
      subclass = "discretize",
      terms = terms,
      role = role,
      trained = trained,
      num_breaks = num_breaks,
      min_unique = min_unique,
      objects = objects,
      options = options,
      skip = skip,
      id = id
    )
  }

bin_wrapper <- function(x, args) {
  bin_call <-
    quote(discretize(x, cuts, labels, prefix, keep_na, infs, min_unique, ...))
  args <- sub_args(discretize.numeric, args, "x")
  args$x <- x
  rlang::exec(discretize, !!!args)
}

#' @export
prep.step_discretize <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)
  check_type(training[, col_names])

  if (length(col_names) > 1 & any(names(x$options) %in% c("prefix", "labels"))) {
    rlang::warn(
      paste0(
        "Note that the options `prefix` and `labels`",
        "will be applied to all variables"
      )
    )
  }

  x$options$cuts <- x$num_breaks
  x$options$min_unique <- x$min_unique

  obj <- lapply(training[, col_names], bin_wrapper, x$options)
  step_discretize_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    objects = obj,
    num_breaks = x$num_breaks,
    min_unique = x$min_unique,
    options = x$options,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_discretize <- function(object, new_data, ...) {
  for (i in names(object$objects))
    new_data[, i] <-
      predict(object$objects[[i]], getElement(new_data, i))
  as_tibble(new_data)
}

print.step_discretize <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Dummy variables from ")
    printer(names(x$objects), x$terms, x$trained, width = width)
    invisible(x)
  }

#' @rdname step_discretize
#' @param x A `step_discretize` object
#' @export
tidy.step_discretize <- function(x, ...) {
  if (is_trained(x)) {
    brks <- lapply(x$objects,
                   function(x) x$breaks)
    num_brks <- vapply(brks, length, c(1L))
    brk_vars <- rep(names(num_brks), num_brks)

    res <- tibble(terms = brk_vars, value = unname(unlist(brks)))
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, value = na_dbl)
  }
  res$id <- x$id
  res
}



#' @rdname tunable.step
#' @export
tunable.step_discretize <- function(x, ...) {
  tibble::tibble(
    name = c("min_unique", "num_breaks"),
    call_info = list(
      list(pkg = "dials", fun = "min_unique"),
      list(pkg = "dials", fun = "num_breaks")
    ),
    source = "recipe",
    component = "step_discretize",
    component_id = x$id
  )
}