File: factor2string.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (141 lines) | stat: -rw-r--r-- 3,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#' Convert Factors to Strings
#'
#' `step_factor2string` will convert one or more factor
#'  vectors to strings.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#'  variables will be converted to strings. See [selections()]
#'  for more details. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this step since no new variables are
#'  created.
#' @param columns A character string of variables that will be
#'  converted. This is `NULL` until computed by
#'  [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  columns that will be affected).
#' @keywords datagen
#' @concept preprocessing
#' @concept variable_encodings
#' @concept factors
#' @export
#' @details `prep` has an option `strings_as_factors` that
#'  defaults to `TRUE`. If this step is used with the default
#'  option, the string(s() produced by this step will be converted
#'  to factors after all of the steps have been prepped.
#' @seealso [step_string2factor()] [step_dummy()]
#' @examples
#' library(modeldata)
#' data(okc)
#'
#' rec <- recipe(~ diet + location, data = okc)
#'
#' rec <- rec %>%
#'   step_string2factor(diet)
#'
#' factor_test <- rec %>%
#'   prep(training = okc,
#'        strings_as_factors = FALSE) %>%
#'   juice
#' # diet is a
#' class(factor_test$diet)
#'
#' rec <- rec %>%
#'   step_factor2string(diet)
#'
#' string_test <- rec %>%
#'   prep(training = okc,
#'        strings_as_factors = FALSE) %>%
#'   juice
#' # diet is a
#' class(string_test$diet)
#'
#' tidy(rec, number = 1)
step_factor2string <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           columns = FALSE,
           skip = FALSE,
           id = rand_id("factor2string")) {
    add_step(
      recipe,
      step_factor2string_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        columns = columns,
        skip = skip,
        id = id
      )
    )
  }

step_factor2string_new <-
  function(terms, role, trained, columns, skip, id) {
    step(
      subclass = "factor2string",
      terms = terms,
      role = role,
      trained = trained,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_factor2string <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)
  fac_check <-
    vapply(training[, col_names], is.factor, logical(1))
  if (any(!fac_check))
    rlang::abort(
      paste0(
      "The following variables are not factor vectors: ",
      paste0("`", names(fac_check)[!fac_check], "`", collapse = ", ")
      )
    )

  step_factor2string_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    columns = col_names,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_factor2string <- function(object, new_data, ...) {
  new_data[, object$columns] <-
    map_df(new_data[, object$columns],
           as.character)

  if (!is_tibble(new_data))
    new_data <- as_tibble(new_data)
  new_data
}

print.step_factor2string <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Character variables from ")
    printer(x$columns, x$terms, x$trained, width = width)
    invisible(x)
  }


#' @rdname step_factor2string
#' @param x A `step_factor2string` object.
#' @export
tidy.step_factor2string <- function(x, ...) {
  res <- simple_terms(x, ...)
  res$id <- x$id
  res
}