1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#' Convert Factors to Strings
#'
#' `step_factor2string` will convert one or more factor
#' vectors to strings.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#' variables will be converted to strings. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param columns A character string of variables that will be
#' converted. This is `NULL` until computed by
#' [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' columns that will be affected).
#' @keywords datagen
#' @concept preprocessing
#' @concept variable_encodings
#' @concept factors
#' @export
#' @details `prep` has an option `strings_as_factors` that
#' defaults to `TRUE`. If this step is used with the default
#' option, the string(s() produced by this step will be converted
#' to factors after all of the steps have been prepped.
#' @seealso [step_string2factor()] [step_dummy()]
#' @examples
#' library(modeldata)
#' data(okc)
#'
#' rec <- recipe(~ diet + location, data = okc)
#'
#' rec <- rec %>%
#' step_string2factor(diet)
#'
#' factor_test <- rec %>%
#' prep(training = okc,
#' strings_as_factors = FALSE) %>%
#' juice
#' # diet is a
#' class(factor_test$diet)
#'
#' rec <- rec %>%
#' step_factor2string(diet)
#'
#' string_test <- rec %>%
#' prep(training = okc,
#' strings_as_factors = FALSE) %>%
#' juice
#' # diet is a
#' class(string_test$diet)
#'
#' tidy(rec, number = 1)
step_factor2string <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = FALSE,
skip = FALSE,
id = rand_id("factor2string")) {
add_step(
recipe,
step_factor2string_new(
terms = ellipse_check(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_factor2string_new <-
function(terms, role, trained, columns, skip, id) {
step(
subclass = "factor2string",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_factor2string <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
fac_check <-
vapply(training[, col_names], is.factor, logical(1))
if (any(!fac_check))
rlang::abort(
paste0(
"The following variables are not factor vectors: ",
paste0("`", names(fac_check)[!fac_check], "`", collapse = ", ")
)
)
step_factor2string_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_factor2string <- function(object, new_data, ...) {
new_data[, object$columns] <-
map_df(new_data[, object$columns],
as.character)
if (!is_tibble(new_data))
new_data <- as_tibble(new_data)
new_data
}
print.step_factor2string <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Character variables from ")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_factor2string
#' @param x A `step_factor2string` object.
#' @export
tidy.step_factor2string <- function(x, ...) {
res <- simple_terms(x, ...)
res$id <- x$id
res
}
|