1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
#' Filter rows using dplyr
#'
#' `step_filter` creates a *specification* of a recipe step
#' that will remove rows using [dplyr::filter()].
#'
#' @template row-ops
#' @inheritParams step_center
#' @param ... Logical predicates defined in terms of the variables
#' in the data. Multiple conditions are combined with `&`. Only
#' rows where the condition evaluates to `TRUE` are kept. See
#' [dplyr::filter()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param inputs Quosure of values given by `...`.
#' @param skip A logical. Should the step be skipped when the
#' recipe is baked by [bake.recipe()]? While all operations are baked
#' when [prep.recipe()] is run, some operations may not be able to be
#' conducted on new data (e.g. processing the outcome variable(s)).
#' Care should be taken when using `skip = FALSE`.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which
#' contains the conditional statements. These
#' expressions are text representations and are not parsable.
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!`) to embed
#' the value of the object in the expression (to be portable
#' between sessions). See the examples.
#' @keywords datagen
#' @concept preprocessing
#' @concept row_filters
#' @export
#' @examples
#' rec <- recipe( ~ ., data = iris) %>%
#' step_filter(Sepal.Length > 4.5, Species == "setosa")
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' dplyr::filter(Sepal.Length > 4.5, Species == "setosa")
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' dplyr::filter(Sepal.Length > 4.5, Species != "setosa")
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' values <- c("versicolor", "virginica")
#'
#' qq_rec <-
#' recipe( ~ ., data = iris) %>%
#' # Embed the `values` object in the call using !!
#' step_filter(Sepal.Length > 4.5, Species %in% !!values)
#'
#' tidy(qq_rec, number = 1)
#' @seealso [step_naomit()] [step_sample()] [step_slice()]
step_filter <- function(
recipe, ...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("filter")
) {
inputs <- enquos(...)
add_step(
recipe,
step_filter_new(
terms = terms,
trained = trained,
role = role,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_filter_new <-
function(terms, role, trained, inputs, skip, id) {
step(
subclass = "filter",
terms = terms,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_filter <- function(x, training, info = NULL, ...) {
step_filter_new(
terms = x$terms,
trained = TRUE,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_filter <- function(object, new_data, ...) {
dplyr::filter(new_data, !!!object$inputs)
}
print.step_filter <-
function(x, width = max(20, options()$width - 35), ...) {
cat("Row filtering")
if (x$trained) {
cat(" [trained]\n")
} else {
cat("\n")
}
invisible(x)
}
#' @rdname step_filter
#' @param x A `step_filter` object
#' @export
tidy.step_filter <- function(x, ...) {
cond_expr <- map(x$inputs, quo_get_expr)
cond_expr <- map_chr(cond_expr, quo_text, width = options()$width, nlines = 1)
tibble(
terms = cond_expr,
id = rep(x$id, length(x$inputs))
)
}
|