File: ica.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (266 lines) | stat: -rw-r--r-- 8,149 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#' ICA Signal Extraction
#'
#' `step_ica` creates a *specification* of a recipe step
#'  that will convert numeric data into one or more independent
#'  components.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#'  variables will be used to compute the components. See
#'  [selections()] for more details. For the `tidy`
#'  method, these are not currently used.
#' @param role For model terms created by this step, what analysis
#'  role should they be assigned?. By default, the function assumes
#'  that the new independent component columns created by the
#'  original variables will be used as predictors in a model.
#' @param num_comp The number of ICA components to retain as new
#'  predictors. If `num_comp` is greater than the number of columns
#'  or the number of possible components, a smaller value will be
#'  used.
#' @param options A list of options to
#'  [fastICA::fastICA()]. No defaults are set here.
#'  **Note** that the arguments `X` and `n.comp` should
#'  not be passed here.
#' @param res The [fastICA::fastICA()] object is stored
#'  here once this preprocessing step has be trained by
#'  [prep.recipe()].
#' @param prefix A character string that will be the prefix to the
#'  resulting new variables. See notes below.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  selectors or variables selected), `value` (the loading),
#'  and `component`.
#' @keywords datagen
#' @concept preprocessing
#' @concept ica
#' @concept projection_methods
#' @export
#' @details Independent component analysis (ICA) is a
#'  transformation of a group of variables that produces a new set
#'  of artificial features or components. ICA assumes that the
#'  variables are mixtures of a set of distinct, non-Gaussian
#'  signals and attempts to transform the data to isolate these
#'  signals. Like PCA, the components are statistically independent
#'  from one another. This means that they can be used to combat
#'  large inter-variables correlations in a data set. Also like PCA,
#'  it is advisable to center and scale the variables prior to
#'  running ICA.
#'
#' This package produces components using the "FastICA"
#'  methodology (see reference below). This step requires the
#'  \pkg{dimRed} and \pkg{fastICA} packages. If not installed, the
#'  step will stop with a note about installing these packages.
#'
#' The argument `num_comp` controls the number of components that
#'  will be retained (the original variables that are used to derive
#'  the components are removed from the data). The new components
#'  will have names that begin with `prefix` and a sequence of
#'  numbers. The variable names are padded with zeros. For example,
#'  if `num_comp < 10`, their names will be `IC1` - `IC9`.
#'  If `num_comp = 101`, the names would be `IC001` -
#'  `IC101`.
#'
#' @references Hyvarinen, A., and Oja, E. (2000). Independent
#'  component analysis: algorithms and applications. *Neural
#'  Networks*, 13(4-5), 411-430.
#'
#' @examples
#' # from fastICA::fastICA
#' set.seed(131)
#' S <- matrix(runif(400), 200, 2)
#' A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
#' X <- as.data.frame(S %*% A)
#'
#' tr <- X[1:100, ]
#' te <- X[101:200, ]
#'
#' rec <- recipe( ~ ., data = tr)
#'
#' ica_trans <- step_center(rec,  V1, V2)
#' ica_trans <- step_scale(ica_trans, V1, V2)
#' ica_trans <- step_ica(ica_trans, V1, V2, num_comp = 2)
#'
#' if (require(dimRed) & require(fastICA)) {
#'   ica_estimates <- prep(ica_trans, training = tr)
#'   ica_data <- bake(ica_estimates, te)
#'
#'   plot(te$V1, te$V2)
#'   plot(ica_data$IC1, ica_data$IC2)
#'
#'   tidy(ica_trans, number = 3)
#'   tidy(ica_estimates, number = 3)
#' }
#' @seealso [step_pca()] [step_kpca()]
#'   [step_isomap()] [recipe()] [prep.recipe()]
#'   [bake.recipe()]
step_ica <-
  function(recipe,
           ...,
           role = "predictor",
           trained = FALSE,
           num_comp  = 5,
           options = list(method = "C"),
           res = NULL,
           prefix = "IC",
           skip = FALSE,
           id = rand_id("ica")) {


    recipes_pkg_check(required_pkgs.step_ica())

    add_step(
      recipe,
      step_ica_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        num_comp = num_comp,
        options = options,
        res = res,
        prefix = prefix,
        skip = skip,
        id = id
      )
    )
  }

step_ica_new <-
  function(terms, role, trained, num_comp, options, res, prefix, skip, id) {
    step(
      subclass = "ica",
      terms = terms,
      role = role,
      trained = trained,
      num_comp = num_comp,
      options = options,
      res = res,
      prefix = prefix,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_ica <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)
  check_type(training[, col_names])

  if (x$num_comp > 0) {
    x$num_comp <- min(x$num_comp, length(col_names))

    indc <- dimRed::FastICA(stdpars = x$options)
    indc <-
      try(
        indc@fun(
          dimRed::dimRedData(as.data.frame(training[, col_names, drop = FALSE])),
          list(ndim = x$num_comp)
        ),
        silent = TRUE
      )
    if (inherits(indc, "try-error")) {
      rlang::abort(paste0("`step_ica` failed with error:\n", as.character(indc)))
    }
  } else {
    indc <- list(x_vars = col_names)
  }

  step_ica_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    num_comp = x$num_comp,
    options = x$options,
    res = indc,
    prefix = x$prefix,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_ica <- function(object, new_data, ...) {
  if (object$num_comp > 0) {
    ica_vars <- colnames(environment(object$res@apply)$indata)
    comps <-
      object$res@apply(
        dimRed::dimRedData(
          as.data.frame(new_data[, ica_vars, drop = FALSE])
        )
      )@data
    comps <- comps[, 1:object$num_comp, drop = FALSE]
    colnames(comps) <- names0(ncol(comps), object$prefix)
    new_data <- bind_cols(new_data, as_tibble(comps))
    new_data <-
      new_data[, !(colnames(new_data) %in% ica_vars), drop = FALSE]
  }
  as_tibble(new_data)
}


print.step_ica <-
  function(x, width = max(20, options()$width - 29), ...) {
    if (x$num_comp == 0) {
      cat("No ICA components were extracted.\n")
    } else {
      cat("ICA extraction with ")
      printer(colnames(x$res@org.data), x$terms, x$trained, width = width)
    }

    invisible(x)
  }

#' @rdname step_ica
#' @param x A `step_ica` object.
#' @export
tidy.step_ica <- function(x, ...) {
  if (is_trained(x)) {
    if (x$num_comp > 0) {
      rot <- dimRed::getRotationMatrix(x$res)
      colnames(rot) <- names0(ncol(rot), x$prefix)
      rot <- as.data.frame(rot)
      vars <- colnames(x$res@org.data)
      npc <- ncol(rot)
      res <- utils::stack(rot)
      colnames(res) <- c("value", "component")
      res$component <- as.character(res$component)
      res$terms <- rep(vars, npc)
      res <- as_tibble(res)
    } else {
      res <- tibble(terms = x$res$x_vars, value = na_dbl, component  = na_chr)
    }
  } else {
    term_names <- sel2char(x$terms)
    comp_names <- names0(x$num_comp, x$prefix)
    res <- tidyr::crossing(terms = term_names,
                           value = na_dbl,
                           component  = comp_names)
    res$terms <- as.character(res$terms)
    res$component <- as.character(res$component)
    res <- as_tibble(res)
  }
  res$id <- x$id
  res <- arrange(res, terms, component)
  select(res, terms, component, value, id)
}


#' @rdname tunable.step
#' @export
tunable.step_ica <- function(x, ...) {
  tibble::tibble(
    name = "num_comp",
    call_info = list(list(pkg = "dials", fun = "num_comp", range = c(1L, 4L))),
    source = "recipe",
    component = "step_ica",
    component_id = x$id
  )
}


#' @rdname required_pkgs.step
#' @export
required_pkgs.step_ica <- function(x, ...) {
  c("dimRed", "fastICA")
}