1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
#' Create Interaction Variables
#'
#' `step_interact` creates a *specification* of a recipe
#' step that will create new columns that are interaction terms
#' between two or more variables.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param terms A traditional R formula that contains interaction
#' terms. This can include `.` and selectors.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned?. By default, the function assumes
#' that the new columns created from the original variables will be
#' used as predictors in a model.
#' @param objects A list of `terms` objects for each
#' individual interaction.
#' @param sep A character value used to delineate variables in an
#' interaction (e.g. `var1_x_var2` instead of the more
#' traditional `var1:var2`).
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which is
#' the interaction effects.
#' @keywords datagen
#' @concept preprocessing
#' @concept model_specification
#' @export
#' @details `step_interact` can create interactions between
#' variables. It is primarily intended for **numeric data**;
#' categorical variables should probably be converted to dummy
#' variables using [step_dummy()] prior to being used for
#' interactions.
#'
#' Unlike other step functions, the `terms` argument should
#' be a traditional R model formula but should contain no inline
#' functions (e.g. `log`). For example, for predictors
#' `A`, `B`, and `C`, a formula such as
#' `~A:B:C` can be used to make a three way interaction
#' between the variables. If the formula contains terms other than
#' interactions (e.g. `(A+B+C)^3`) only the interaction terms
#' are retained for the design matrix.
#'
#' The separator between the variables defaults to "`_x_`" so
#' that the three way interaction shown previously would generate a
#' column named `A_x_B_x_C`. This can be changed using the
#' `sep` argument.
#'
#' When dummy variables are created and are used in interactions,
#' selectors can help specify the interactions succinctly. For
#' example, suppose a factor column `X` gets converted to dummy
#' variables `x_2`, `x_3`, ..., `x_6` using [step_dummy()]. If
#' you wanted an interaction with numeric column `z`, you could
#' create a set of specific interaction effects (e.g.
#' `x_2:z + x_3:z` and so on) or you could use
#' `starts_with("z_"):z`. When [prep()] evaluates this step,
#' `starts_with("z_")` resolves to `(x_2 + x_3 + x_4 + x_5 + x6)`
#' so that the formula is now `(x_2 + x_3 + x_4 + x_5 + x6):z` and
#' all two-way interactions are created.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' int_mod_1 <- rec %>%
#' step_interact(terms = ~ carbon:hydrogen)
#'
#' int_mod_2 <- rec %>%
#' step_interact(terms = ~ (matches("gen$") + sulfur)^2)
#'
#' int_mod_1 <- prep(int_mod_1, training = biomass_tr)
#' int_mod_2 <- prep(int_mod_2, training = biomass_tr)
#'
#' dat_1 <- bake(int_mod_1, biomass_te)
#' dat_2 <- bake(int_mod_2, biomass_te)
#'
#' names(dat_1)
#' names(dat_2)
#'
#' tidy(int_mod_1, number = 1)
#' tidy(int_mod_2, number = 1)
step_interact <-
function(recipe,
terms,
role = "predictor",
trained = FALSE,
objects = NULL,
sep = "_x_",
skip = FALSE,
id = rand_id("interact")) {
add_step(
recipe,
step_interact_new(
terms = terms,
trained = trained,
role = role,
objects = objects,
sep = sep,
skip = skip,
id = id
)
)
}
## Initializes a new object
step_interact_new <-
function(terms, role, trained, objects, sep, skip, id) {
step(
subclass = "interact",
terms = terms,
role = role,
trained = trained,
objects = objects,
sep = sep,
skip = skip,
id = id
)
}
## The idea is to save a bunch of x-factor interaction terms instead of
## one large set of collected terms.
#' @export
prep.step_interact <- function(x, training, info = NULL, ...) {
# Identify any selectors that are involved in the interaction
# formula
form_sel <- find_selectors(x$terms)
# Use formula environment as quosure env
env <- rlang::f_env(x$terms)
eval_select_recipes_expr <- function(expr) {
# Wrap `expr` into a list-of-quos as `eval_select_recipes()` expects
quo <- new_quosure(expr, env)
quos <- list(quo)
eval_select_recipes(quos, data = training, info = info)
}
## Resolve the selectors to a expression containing an additive
## function of the variables
if(length(form_sel) > 0) {
form_res <- map(form_sel, eval_select_recipes_expr)
form_res <- map(form_res, vec_2_expr)
## Subsitute the column names into the original interaction
## formula.
for(i in seq(along.with = form_res)) {
x$terms <- replace_selectors(
x$terms,
form_sel[[i]],
form_res[[i]]
)
}
}
## First, find the interaction terms based on the given formula
int_terms <- get_term_names(x$terms, vnames = colnames(training))
if (!all(is.na(int_terms))) {
## Check to see if any variables are non-numeric and issue a warning
## if that is the case
vars <-
unique(unlist(lapply(make_new_formula(int_terms), all.vars)))
var_check <- info[info$variable %in% vars, ]
if (any(var_check$type == "nominal"))
rlang::warn(
paste0(
"Categorical variables used in `step_interact` should probably be ",
"avoided; This can lead to differences in dummy variable values that ",
"are produced by `step_dummy`. Please convert all involved variables ",
"to dummy variables first."
)
)
## For each interaction, create a new formula that has main effects
## and only the interaction of choice (e.g. `a+b+c+a:b:c`)
int_forms <- make_new_formula(int_terms)
## Generate a standard R `terms` object from these short formulas and
## save to make future interactions
int_terms <- make_small_terms(int_forms, training)
}
step_interact_new(
terms = x$terms,
role = x$role,
trained = TRUE,
objects = int_terms,
sep = x$sep,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_interact <- function(object, new_data, ...) {
# When the interaction specification failed, just move on
if (isTRUE(all(is.na(object$object))))
return(new_data)
## `na.action` cannot be passed to `model.matrix` but we
## can change it globally for a bit
old_opt <- options()$na.action
options(na.action = "na.pass")
on.exit(options(na.action = old_opt))
## Create low level model matrices then remove the non-interaction terms.
res <- lapply(object$object, model.matrix, data = new_data)
options(na.action = old_opt)
on.exit(expr = NULL)
res <-
lapply(res, function(x)
x[, grepl(":", colnames(x)), drop = FALSE])
ncols <- vapply(res, ncol, c(int = 1L))
out <- matrix(NA, nrow = nrow(new_data), ncol = sum(ncols))
strt <- 1
for (i in seq_along(ncols)) {
cols <- (strt):(strt + ncols[i] - 1)
out[, cols] <- res[[i]]
strt <- max(cols) + 1
}
colnames(out) <-
gsub(":", object$sep, unlist(lapply(res, colnames)))
new_data <- bind_cols(new_data, as_tibble(out))
if (!is_tibble(new_data))
new_data <- as_tibble(new_data)
new_data
}
## This uses the highest level of interactions
x_fac_int <- function(x)
as.formula(
paste0("~",
paste0(x, collapse = "+"),
"+",
paste0(x, collapse = ":")
)
)
make_new_formula <- function(x) {
splitup <- strsplit(x, ":")
lapply(splitup, x_fac_int)
}
## Given a standard model formula and some data, get the
## term expansion (without `.`s). This returns the factor
## names and would not expand dummy variables.
get_term_names <- function(form, vnames) {
if (!is_formula(form))
form <- as.formula(form)
## We are going to cheat and make a small fake data set to
## efficiently get the full formula expansion from
## model.matrix (devoid of factor levels) and then
## pick off the interactions
dat <- matrix(1, nrow = 5, ncol = length(vnames))
colnames(dat) <- vnames
nms <- try(
colnames(model.matrix(form, data = as.data.frame(dat))),
silent = TRUE
)
if (inherits(nms, "try-error")) {
rlang::warn(
paste0(
"Interaction specification failed for: ",
deparse(form),
". No interactions will be created."
)
)
return(rlang::na_chr)
}
nms <- nms[nms != "(Intercept)"]
nms <- grep(":", nms, value = TRUE)
nms
}
## For a given data set and a list of formulas, generate the
## standard R `terms` objects
make_small_terms <- function(forms, dat) {
lapply(forms, terms, data = dat)
}
print.step_interact <-
function(x, width = max(20, options()$width - 27), ...) {
cat("Interactions with ", sep = "")
cat(as.character(x$terms)[-1])
if (x$trained)
cat(" [trained]\n")
else
cat("\n")
invisible(x)
}
int_name <- function(x) {
if (inherits(x, "terms")) {
res <- get_term_names(x, all.vars(x))
} else {
res <- rlang::na_chr
}
res
}
#' @rdname step_interact
#' @param x A `step_interact` object
#' @export
tidy.step_interact <- function(x, ...) {
res <- tibble(terms = vapply(x$objects, int_name, character(1)))
res$id <- x$id
res
}
map_call <- function(x, f, ...) as.call(lapply(x, f, ...))
map_pairlist <- function(x, f, ...) as.pairlist(lapply(x, f, ...))
# In a formula, find the selectors (if any) and return the call(s)
find_selectors <- function (f) {
if (is.function(f)) {
find_selectors(body(f))
}
else if (is.call(f)) {
fname <- as.character(f[[1]])
res <- if (fname %in% intersect_selectors) f else list()
c(res, unlist(lapply(f[-1], find_selectors), use.names = FALSE))
}
else if (is.name(f) || is.atomic(f)) {
list()
}
else {
# User supplied incorrect input
rlang::abort(paste0("Don't know how to handle type ", typeof(f), "."))
}
}
replace_selectors <- function(x, elem, value) {
if (is.atomic(x) || is.name(x)) {
x
} else if (is.call(x)) {
if (identical(x, elem)) {
value
} else {
map_call(x, replace_selectors, elem, value)
}
} else if (is.pairlist(x)) {
map_pairlist(x, replace_selectors, elem, value)
} else {
# User supplied incorrect input
rlang::abort(paste0("Don't know how to handle type ", typeof(x), "."))
}
}
intersect_selectors <- c(
"starts_with",
"ends_with",
"contains",
"matches",
"num_range",
"everything",
"one_of",
"all_of",
"any_of",
"c",
"where",
"has_role",
"all_predictors",
"all_outcomes",
"has_type",
"all_numeric",
"all_nominal"
)
plus_call <- function(x, y) call("+", x, y)
vec_2_expr <- function(x) {
x <- rlang::syms(x)
res <- purrr::reduce(x, plus_call)
expr((!!res))
}
|