1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#' Isomap Embedding
#'
#' `step_isomap` creates a *specification* of a recipe
#' step that will convert numeric data into one or more new
#' dimensions.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#' variables will be used to compute the dimensions. See
#' [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned?. By default, the function assumes
#' that the new dimension columns created by the original variables
#' will be used as predictors in a model.
#' @param num_terms The number of isomap dimensions to retain as new
#' predictors. If `num_terms` is greater than the number of columns
#' or the number of possible dimensions, a smaller value will be
#' used.
#' @param neighbors The number of neighbors.
#' @param options A list of options to [dimRed::Isomap()].
#' @param res The [dimRed::Isomap()] object is stored
#' here once this preprocessing step has be trained by
#' [prep.recipe()].
#' @param prefix A character string that will be the prefix to the
#' resulting new variables. See notes below.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected).
#' @keywords datagen
#' @concept preprocessing
#' @concept isomap
#' @concept projection_methods
#' @export
#' @details Isomap is a form of multidimensional scaling (MDS).
#' MDS methods try to find a reduced set of dimensions such that
#' the geometric distances between the original data points are
#' preserved. This version of MDS uses nearest neighbors in the
#' data as a method for increasing the fidelity of the new
#' dimensions to the original data values.
#'
#' This step requires the \pkg{dimRed}, \pkg{RSpectra},
#' \pkg{igraph}, and \pkg{RANN} packages. If not installed, the
#' step will stop with a note about installing these packages.
#'
#'
#' It is advisable to center and scale the variables prior to
#' running Isomap (`step_center` and `step_scale` can be
#' used for this purpose).
#'
#' The argument `num_terms` controls the number of components that
#' will be retained (the original variables that are used to derive
#' the components are removed from the data). The new components
#' will have names that begin with `prefix` and a sequence of
#' numbers. The variable names are padded with zeros. For example,
#' if `num_terms < 10`, their names will be `Isomap1` -
#' `Isomap9`. If `num_terms = 101`, the names would be
#' `Isomap001` - `Isomap101`.
#' @references De Silva, V., and Tenenbaum, J. B. (2003). Global
#' versus local methods in nonlinear dimensionality reduction.
#' *Advances in Neural Information Processing Systems*.
#' 721-728.
#'
#' \pkg{dimRed}, a framework for dimensionality reduction,
#' https://github.com/gdkrmr
#'
#' @examples
#' \donttest{
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' im_trans <- rec %>%
#' step_YeoJohnson(all_predictors()) %>%
#' step_normalize(all_predictors()) %>%
#' step_isomap(all_predictors(), neighbors = 100, num_terms = 2)
#'
#' if (require(dimRed) & require(RSpectra)) {
#' im_estimates <- prep(im_trans, training = biomass_tr)
#'
#' im_te <- bake(im_estimates, biomass_te)
#'
#' rng <- extendrange(c(im_te$Isomap1, im_te$Isomap2))
#' plot(im_te$Isomap1, im_te$Isomap2,
#' xlim = rng, ylim = rng)
#'
#' tidy(im_trans, number = 3)
#' tidy(im_estimates, number = 3)
#' }
#' }
#' @seealso [step_pca()] [step_kpca()]
#' [step_ica()] [recipe()] [prep.recipe()]
#' [bake.recipe()]
step_isomap <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
num_terms = 5,
neighbors = 50,
options = list(.mute = c("message", "output")),
res = NULL,
prefix = "Isomap",
skip = FALSE,
id = rand_id("isomap")) {
recipes_pkg_check(required_pkgs.step_isomap())
add_step(
recipe,
step_isomap_new(
terms = ellipse_check(...),
role = role,
trained = trained,
num_terms = num_terms,
neighbors = neighbors,
options = options,
res = res,
prefix = prefix,
skip = skip,
id = id
)
)
}
step_isomap_new <-
function(terms, role, trained, num_terms, neighbors, options, res,
prefix, skip, id) {
step(
subclass = "isomap",
terms = terms,
role = role,
trained = trained,
num_terms = num_terms,
neighbors = neighbors,
options = options,
res = res,
prefix = prefix,
skip = skip,
id = id
)
}
#' @export
prep.step_isomap <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
if (x$num_terms > 0) {
x$num_terms <- min(x$num_terms, ncol(training))
x$neighbors <- min(x$neighbors, nrow(training))
iso_map <-
try(
dimRed::embed(
dimRed::dimRedData(as.data.frame(training[, col_names, drop = FALSE])),
"Isomap",
knn = x$neighbors,
ndim = x$num_terms,
.mute = x$options$.mute
),
silent = TRUE)
if (inherits(iso_map, "try-error")) {
rlang::abort(paste0("`step_isomap` failed with error:\n", as.character(iso_map)))
}
} else {
iso_map <- list(x_vars = col_names)
}
step_isomap_new(
terms = x$terms,
role = x$role,
trained = TRUE,
num_terms = x$num_terms,
neighbors = x$neighbors,
options = x$options,
res = iso_map,
prefix = x$prefix,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_isomap <- function(object, new_data, ...) {
if (object$num_terms > 0) {
isomap_vars <- colnames(environment(object$res@apply)$indata)
comps <-
object$res@apply(
dimRed::dimRedData(as.data.frame(new_data[, isomap_vars, drop = FALSE]))
)@data
comps <- comps[, 1:object$num_terms, drop = FALSE]
comps <- check_name(comps, new_data, object)
new_data <- bind_cols(new_data, as_tibble(comps))
new_data <-
new_data[, !(colnames(new_data) %in% isomap_vars), drop = FALSE]
if (!is_tibble(new_data))
new_data <- as_tibble(new_data)
}
new_data
}
print.step_isomap <- function(x, width = max(20, options()$width - 35), ...) {
if (x$num_terms == 0) {
cat("Isomap was not conducted.\n")
} else {
cat("Isomap approximation with ")
printer(colnames(x$res@org.data), x$terms, x$trained, width = width)
}
invisible(x)
}
#' @rdname step_isomap
#' @param x A `step_isomap` object
#' @export
tidy.step_isomap <- function(x, ...) {
if (is_trained(x)) {
if (x$num_terms > 0) {
res <- tibble(terms = colnames(x$res@org.data))
} else {
res <- tibble(terms = x$res$x_vars)
}
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names)
}
res$id <- x$id
res
}
#' @rdname tunable.step
#' @export
tunable.step_isomap <- function(x, ...) {
tibble::tibble(
name = c("num_terms", "neighbors"),
call_info = list(
list(pkg = "dials", fun = "num_terms", range = c(1L, 4L)),
list(pkg = "dials", fun = "neighbors", range = c(1L, 15L))
),
source = "recipe",
component = "step_isomap",
component_id = x$id
)
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_isomap <- function(x, ...) {
c("dimRed", "RSpectra", "igraph", "RANN")
}
|