File: knn_imp.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (280 lines) | stat: -rw-r--r-- 9,028 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#' Imputation via K-Nearest Neighbors
#'
#' `step_knnimpute` creates a *specification* of a recipe step that will
#'  impute missing data using nearest neighbors.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose variables. For
#'  `step_knnimpute`, this indicates the variables to be imputed. When used with
#'  `imp_vars`, the dots indicate which variables are used to predict the
#'  missing data in each variable. See [selections()] for more details. For the
#'  `tidy` method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param impute_with A call to `imp_vars` to specify which variables are used
#'  to impute the variables that can include specific variable names separated
#'  by commas or different selectors (see [selections()]). If a column is
#'  included in both lists to be imputed and to be an imputation predictor, it
#'  will be removed from the latter and not used to impute itself.
#' @param neighbors The number of neighbors.
#' @param options A named list of options to pass to [gower::gower_topn()].
#'  Available options are currently `nthread` and `eps`.
#' @param ref_data A tibble of data that will reflect the data preprocessing
#'  done up to the point of this imputation step. This is `NULL` until the step
#'  is trained by [prep.recipe()].
#' @param columns The column names that will be imputed and used for
#'  imputation. This is `NULL` until the step is trained by [prep.recipe()].
#' @return An updated version of `recipe` with the new step added to the
#'  sequence of existing steps (if any). For the `tidy` method, a tibble with
#'  columns `terms` (the selectors or variables for imputation), `predictors`
#'  (those variables used to impute), and `neighbors`.
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details The step uses the training set to impute any other data sets. The
#'  only distance function available is Gower's distance which can be used for
#'  mixtures of nominal and numeric data.
#'
#' Once the nearest neighbors are determined, the mode is used to predictor
#'  nominal variables and the mean is used for numeric data. Note that, if the
#'  underlying data are integer, the mean will be converted to an integer too.
#'
#' Note that if a variable that is to be imputed is also in `impute_with`,
#'  this variable will be ignored.
#'
#' It is possible that missing values will still occur after imputation if a
#'  large majority (or all) of the imputing variables are also missing.
#'
#' @references Gower, C. (1971) "A general coefficient of similarity and some
#'  of its properties," Biometrics, 857-871.
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#' biomass_te_whole <- biomass_te
#'
#' # induce some missing data at random
#' set.seed(9039)
#' carb_missing <- sample(1:nrow(biomass_te), 3)
#' nitro_missing <- sample(1:nrow(biomass_te), 3)
#'
#' biomass_te$carbon[carb_missing] <- NA
#' biomass_te$nitrogen[nitro_missing] <- NA
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'               data = biomass_tr)
#'
#' ratio_recipe <- rec %>%
#'   step_knnimpute(all_predictors(), neighbors = 3)
#' ratio_recipe2 <- prep(ratio_recipe, training = biomass_tr)
#' imputed <- bake(ratio_recipe2, biomass_te)
#'
#' # how well did it work?
#' summary(biomass_te_whole$carbon)
#' cbind(before = biomass_te_whole$carbon[carb_missing],
#'       after = imputed$carbon[carb_missing])
#'
#' summary(biomass_te_whole$nitrogen)
#' cbind(before = biomass_te_whole$nitrogen[nitro_missing],
#'       after = imputed$nitrogen[nitro_missing])
#'
#' tidy(ratio_recipe, number = 1)
#' tidy(ratio_recipe2, number = 1)

step_knnimpute <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           neighbors = 5,
           impute_with = imp_vars(all_predictors()),
           options = list(nthread = 1, eps = 1e-08),
           ref_data = NULL,
           columns = NULL,
           skip = FALSE,
           id = rand_id("knnimpute")) {
    if (is.null(impute_with)) {
      rlang::abort("Please list some variables in `impute_with`")
    }

    if (!is.list(options))
      rlang::abort("`options` should be a named list.")
    opt_nms <- names(options)
    if (length(options) > 0) {
      if (any(!(opt_nms %in% c("eps", "nthread")))) {
        rlang::abort("Availible options are 'eps', and 'nthread'.")
      }
      if (all(opt_nms != "nthread")) {
        options$nthread <- 1
      }
      if (all(opt_nms != "eps")) {
        options$eps <- 1e-08
      }
    } else {
      options <- list(nthread = 1, eps = 1e-08)
    }

    add_step(
      recipe,
      step_knnimpute_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        neighbors = neighbors,
        impute_with = impute_with,
        ref_data = ref_data,
        options = options,
        columns = columns,
        skip = skip,
        id = id
      )
    )
  }

step_knnimpute_new <-
  function(terms, role, trained, neighbors, impute_with, ref_data, options,
           columns, skip, id) {
    step(
      subclass = "knnimpute",
      terms = terms,
      role = role,
      trained = trained,
      neighbors = neighbors,
      impute_with = impute_with,
      ref_data = ref_data,
      options = options,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_knnimpute <- function(x, training, info = NULL, ...) {
  var_lists <-
    impute_var_lists(
      to_impute = x$terms,
      impute_using = x$impute_with,
      training = training,
      info = info
    )
  all_x_vars <- lapply(var_lists, function(x) c(x$x, x$y))
  all_x_vars <- unique(unlist(all_x_vars))

  step_knnimpute_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    neighbors = x$neighbors,
    impute_with = x$impute_with,
    ref_data = training[, all_x_vars],
    options = x$options,
    columns = var_lists,
    skip = x$skip,
    id = x$id
  )
}

nn_index <- function(miss_data, ref_data, vars, K, opt) {
  gower_topn(
    ref_data[, vars],
    miss_data[, vars],
    n = K,
    nthread = opt$nthread,
    eps = opt$eps
  )$index
}

nn_pred <- function(index, dat) {
  dat <- dat[index, ]
  dat <- getElement(dat, names(dat))
  dat <- dat[!is.na(dat)]
  est <- if (is.factor(dat) | is.character(dat))
    mode_est(dat)
  else
    mean(dat)
  est
}


#' @export
bake.step_knnimpute <- function(object, new_data, ...) {
  missing_rows <- !complete.cases(new_data)
  if (!any(missing_rows))
    return(new_data)

  old_data <- new_data
  for (i in seq(along.with = object$columns)) {
    imp_var <- object$columns[[i]]$y
    missing_rows <- !complete.cases(new_data[, imp_var])
    if (any(missing_rows)) {
      preds <- object$columns[[i]]$x
      imp_data <- old_data[missing_rows, preds, drop = FALSE]
      ## do a better job of checking this:
      if (all(is.na(imp_data))) {
        rlang::warn("All predictors are missing; cannot impute")
      } else {
        imp_var_complete <- !is.na(object$ref_data[[imp_var]])
        nn_ind <- nn_index(object$ref_data[imp_var_complete,],
                           imp_data, preds,
                           object$neighbors,
                           object$options)
        pred_vals <-
          apply(nn_ind, 2, nn_pred, dat = object$ref_data[imp_var_complete, imp_var])
        pred_vals <- cast(pred_vals, object$ref_data[[imp_var]])
        new_data[missing_rows, imp_var] <- pred_vals
      }
    }
  }
  new_data
}


print.step_knnimpute <-
  function(x, width = max(20, options()$width - 31), ...) {
    all_x_vars <- lapply(x$columns, function(x) x$x)
    all_x_vars <- unique(unlist(all_x_vars))
    cat("K-nearest neighbor imputation for ", sep = "")
    printer(all_x_vars, x$terms, x$trained, width = width)
    invisible(x)
  }

#' @rdname step_knnimpute
#' @param x A `step_knnimpute` object.
#' @export
tidy.step_knnimpute <- function(x, ...) {
  if (is_trained(x)) {
    res <- purrr::map_df(x$columns,
                         function(x)
                           data.frame(
                             terms = x$y,
                             predictors = x$x,
                             stringsAsFactors = FALSE
                           )
    )
    res <- as_tibble(res)
    res$neighbors <- rep(x$neighbors, nrow(res))
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, predictors = na_chr, neighbors = x$neighbors)
  }
  res$id <- x$id
  res
}


#' @rdname tunable.step
#' @export
tunable.step_knnimpute <- function(x, ...) {
  tibble::tibble(
    name = "neighbors",
    call_info = list(list(pkg = "dials", fun = "neighbors", range = c(1L, 10L))),
    source = "recipe",
    component = "step_knnimpute",
    component_id = x$id
  )
}