1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
#' Imputation via K-Nearest Neighbors
#'
#' `step_knnimpute` creates a *specification* of a recipe step that will
#' impute missing data using nearest neighbors.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose variables. For
#' `step_knnimpute`, this indicates the variables to be imputed. When used with
#' `imp_vars`, the dots indicate which variables are used to predict the
#' missing data in each variable. See [selections()] for more details. For the
#' `tidy` method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param impute_with A call to `imp_vars` to specify which variables are used
#' to impute the variables that can include specific variable names separated
#' by commas or different selectors (see [selections()]). If a column is
#' included in both lists to be imputed and to be an imputation predictor, it
#' will be removed from the latter and not used to impute itself.
#' @param neighbors The number of neighbors.
#' @param options A named list of options to pass to [gower::gower_topn()].
#' Available options are currently `nthread` and `eps`.
#' @param ref_data A tibble of data that will reflect the data preprocessing
#' done up to the point of this imputation step. This is `NULL` until the step
#' is trained by [prep.recipe()].
#' @param columns The column names that will be imputed and used for
#' imputation. This is `NULL` until the step is trained by [prep.recipe()].
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the selectors or variables for imputation), `predictors`
#' (those variables used to impute), and `neighbors`.
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details The step uses the training set to impute any other data sets. The
#' only distance function available is Gower's distance which can be used for
#' mixtures of nominal and numeric data.
#'
#' Once the nearest neighbors are determined, the mode is used to predictor
#' nominal variables and the mean is used for numeric data. Note that, if the
#' underlying data are integer, the mean will be converted to an integer too.
#'
#' Note that if a variable that is to be imputed is also in `impute_with`,
#' this variable will be ignored.
#'
#' It is possible that missing values will still occur after imputation if a
#' large majority (or all) of the imputing variables are also missing.
#'
#' @references Gower, C. (1971) "A general coefficient of similarity and some
#' of its properties," Biometrics, 857-871.
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#' biomass_te_whole <- biomass_te
#'
#' # induce some missing data at random
#' set.seed(9039)
#' carb_missing <- sample(1:nrow(biomass_te), 3)
#' nitro_missing <- sample(1:nrow(biomass_te), 3)
#'
#' biomass_te$carbon[carb_missing] <- NA
#' biomass_te$nitrogen[nitro_missing] <- NA
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' ratio_recipe <- rec %>%
#' step_knnimpute(all_predictors(), neighbors = 3)
#' ratio_recipe2 <- prep(ratio_recipe, training = biomass_tr)
#' imputed <- bake(ratio_recipe2, biomass_te)
#'
#' # how well did it work?
#' summary(biomass_te_whole$carbon)
#' cbind(before = biomass_te_whole$carbon[carb_missing],
#' after = imputed$carbon[carb_missing])
#'
#' summary(biomass_te_whole$nitrogen)
#' cbind(before = biomass_te_whole$nitrogen[nitro_missing],
#' after = imputed$nitrogen[nitro_missing])
#'
#' tidy(ratio_recipe, number = 1)
#' tidy(ratio_recipe2, number = 1)
step_knnimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
neighbors = 5,
impute_with = imp_vars(all_predictors()),
options = list(nthread = 1, eps = 1e-08),
ref_data = NULL,
columns = NULL,
skip = FALSE,
id = rand_id("knnimpute")) {
if (is.null(impute_with)) {
rlang::abort("Please list some variables in `impute_with`")
}
if (!is.list(options))
rlang::abort("`options` should be a named list.")
opt_nms <- names(options)
if (length(options) > 0) {
if (any(!(opt_nms %in% c("eps", "nthread")))) {
rlang::abort("Availible options are 'eps', and 'nthread'.")
}
if (all(opt_nms != "nthread")) {
options$nthread <- 1
}
if (all(opt_nms != "eps")) {
options$eps <- 1e-08
}
} else {
options <- list(nthread = 1, eps = 1e-08)
}
add_step(
recipe,
step_knnimpute_new(
terms = ellipse_check(...),
role = role,
trained = trained,
neighbors = neighbors,
impute_with = impute_with,
ref_data = ref_data,
options = options,
columns = columns,
skip = skip,
id = id
)
)
}
step_knnimpute_new <-
function(terms, role, trained, neighbors, impute_with, ref_data, options,
columns, skip, id) {
step(
subclass = "knnimpute",
terms = terms,
role = role,
trained = trained,
neighbors = neighbors,
impute_with = impute_with,
ref_data = ref_data,
options = options,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_knnimpute <- function(x, training, info = NULL, ...) {
var_lists <-
impute_var_lists(
to_impute = x$terms,
impute_using = x$impute_with,
training = training,
info = info
)
all_x_vars <- lapply(var_lists, function(x) c(x$x, x$y))
all_x_vars <- unique(unlist(all_x_vars))
step_knnimpute_new(
terms = x$terms,
role = x$role,
trained = TRUE,
neighbors = x$neighbors,
impute_with = x$impute_with,
ref_data = training[, all_x_vars],
options = x$options,
columns = var_lists,
skip = x$skip,
id = x$id
)
}
nn_index <- function(miss_data, ref_data, vars, K, opt) {
gower_topn(
ref_data[, vars],
miss_data[, vars],
n = K,
nthread = opt$nthread,
eps = opt$eps
)$index
}
nn_pred <- function(index, dat) {
dat <- dat[index, ]
dat <- getElement(dat, names(dat))
dat <- dat[!is.na(dat)]
est <- if (is.factor(dat) | is.character(dat))
mode_est(dat)
else
mean(dat)
est
}
#' @export
bake.step_knnimpute <- function(object, new_data, ...) {
missing_rows <- !complete.cases(new_data)
if (!any(missing_rows))
return(new_data)
old_data <- new_data
for (i in seq(along.with = object$columns)) {
imp_var <- object$columns[[i]]$y
missing_rows <- !complete.cases(new_data[, imp_var])
if (any(missing_rows)) {
preds <- object$columns[[i]]$x
imp_data <- old_data[missing_rows, preds, drop = FALSE]
## do a better job of checking this:
if (all(is.na(imp_data))) {
rlang::warn("All predictors are missing; cannot impute")
} else {
imp_var_complete <- !is.na(object$ref_data[[imp_var]])
nn_ind <- nn_index(object$ref_data[imp_var_complete,],
imp_data, preds,
object$neighbors,
object$options)
pred_vals <-
apply(nn_ind, 2, nn_pred, dat = object$ref_data[imp_var_complete, imp_var])
pred_vals <- cast(pred_vals, object$ref_data[[imp_var]])
new_data[missing_rows, imp_var] <- pred_vals
}
}
}
new_data
}
print.step_knnimpute <-
function(x, width = max(20, options()$width - 31), ...) {
all_x_vars <- lapply(x$columns, function(x) x$x)
all_x_vars <- unique(unlist(all_x_vars))
cat("K-nearest neighbor imputation for ", sep = "")
printer(all_x_vars, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_knnimpute
#' @param x A `step_knnimpute` object.
#' @export
tidy.step_knnimpute <- function(x, ...) {
if (is_trained(x)) {
res <- purrr::map_df(x$columns,
function(x)
data.frame(
terms = x$y,
predictors = x$x,
stringsAsFactors = FALSE
)
)
res <- as_tibble(res)
res$neighbors <- rep(x$neighbors, nrow(res))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, predictors = na_chr, neighbors = x$neighbors)
}
res$id <- x$id
res
}
#' @rdname tunable.step
#' @export
tunable.step_knnimpute <- function(x, ...) {
tibble::tibble(
name = "neighbors",
call_info = list(list(pkg = "dials", fun = "neighbors", range = c(1L, 10L))),
source = "recipe",
component = "step_knnimpute",
component_id = x$id
)
}
|