File: kpca_poly.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (276 lines) | stat: -rw-r--r-- 8,537 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
#' Polynomial Kernel PCA Signal Extraction
#'
#' `step_kpca_poly` a *specification* of a recipe step that
#'  will convert numeric data into one or more principal components
#'  using a polynomial kernel basis expansion.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#'  variables will be used to compute the components. See
#'  [selections()] for more details. For the `tidy`
#'  method, these are not currently used.
#' @param role For model terms created by this step, what analysis
#'  role should they be assigned? By default, the function assumes
#'  that the new principal component columns created by the original
#'  variables will be used as predictors in a model.
#' @param num_comp The number of PCA components to retain as new
#'  predictors. If `num_comp` is greater than the number of columns
#'  or the number of possible components, a smaller value will be
#'  used.
#' @param degree,scale_factor,offset Numeric values for the polynomial kernel function.
#' @param res An S4 [kernlab::kpca()] object is stored
#'  here once this preprocessing step has be trained by
#'  [prep.recipe()].
#' @param prefix A character string that will be the prefix to the
#'  resulting new variables. See notes below.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  selectors or variables selected).
#' @keywords datagen
#' @concept preprocessing
#' @concept pca
#' @concept projection_methods
#' @concept kernel_methods
#' @concept basis_expansion
#' @export
#' @details Kernel principal component analysis (kPCA) is an
#'  extension of a PCA analysis that conducts the calculations in a
#'  broader dimensionality defined by a kernel function. For
#'  example, if a quadratic kernel function were used, each variable
#'  would be represented by its original values as well as its
#'  square. This nonlinear mapping is used during the PCA analysis
#'  and can potentially help find better representations of the
#'  original data.
#'
#' This step requires the \pkg{dimRed} and \pkg{kernlab} packages.
#' If not installed, the step will stop with a note about installing
#' these packages.
#'
#' As with ordinary PCA, it is important to standardize the
#'  variables prior to running PCA (`step_center` and
#'  `step_scale` can be used for this purpose).
#'
#' The argument `num_comp` controls the number of components that
#'  will be retained (the original variables that are used to derive
#'  the components are removed from the data). The new components
#'  will have names that begin with `prefix` and a sequence of
#'  numbers. The variable names are padded with zeros. For example,
#'  if `num_comp < 10`, their names will be `kPC1` -
#'  `kPC9`. If `num_comp = 101`, the names would be
#'  `kPC001` - `kPC101`.
#'
#' @references Scholkopf, B., Smola, A., and Muller, K. (1997).
#'  Kernel principal component analysis. *Lecture Notes in
#'  Computer Science*, 1327, 583-588.
#'
#' Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004).
#'  kernlab - An S4 package for kernel methods in R. *Journal
#'  of Statistical Software*, 11(1), 1-20.
#'
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'               data = biomass_tr)
#'
#' kpca_trans <- rec %>%
#'   step_YeoJohnson(all_predictors()) %>%
#'   step_normalize(all_predictors()) %>%
#'   step_kpca_poly(all_predictors())
#'
#' if (require(dimRed) & require(kernlab)) {
#'   kpca_estimates <- prep(kpca_trans, training = biomass_tr)
#'
#'   kpca_te <- bake(kpca_estimates, biomass_te)
#'
#'   rng <- extendrange(c(kpca_te$kPC1, kpca_te$kPC2))
#'   plot(kpca_te$kPC1, kpca_te$kPC2,
#'        xlim = rng, ylim = rng)
#'
#'   tidy(kpca_trans, number = 3)
#'   tidy(kpca_estimates, number = 3)
#' }
#' @seealso [step_pca()] [step_ica()]
#'   [step_isomap()] [recipe()] [prep.recipe()]
#'   [bake.recipe()]
#'
step_kpca_poly <-
  function(recipe,
           ...,
           role = "predictor",
           trained = FALSE,
           num_comp = 5,
           res = NULL,
           degree = 2,
           scale_factor = 1,
           offset = 1,
           prefix = "kPC",
           skip = FALSE,
           id = rand_id("kpca_poly")) {

    recipes_pkg_check(required_pkgs.step_kpca_poly())

    add_step(
      recipe,
      step_kpca_poly_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        num_comp = num_comp,
        res = res,
        degree = degree,
        scale_factor = scale_factor,
        offset = offset,
        prefix = prefix,
        skip = skip,
        id = id
      )
    )
  }

step_kpca_poly_new <-
  function(terms, role, trained, num_comp, res, degree, scale_factor, offset, prefix, skip, id) {
    step(
      subclass = "kpca_poly",
      terms = terms,
      role = role,
      trained = trained,
      num_comp = num_comp,
      res = res,
      degree = degree,
      scale_factor = scale_factor,
      offset = offset,
      prefix = prefix,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_kpca_poly <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)

  check_type(training[, col_names])

  if (x$num_comp > 0) {
    kprc <-
      dimRed::kPCA(
        stdpars = c(
          list(ndim = x$num_comp),
          list(
            kernel = "polydot",
            kpar = list(degree = x$degree, scale = x$scale_factor, offset = x$offset)
          )
        )
      )
    kprc <-
      try(
        kprc@fun(
          dimRed::dimRedData(as.data.frame(training[, col_names, drop = FALSE])),
          kprc@stdpars
        ),
        silent = TRUE
      )
    if (inherits(kprc, "try-error")) {
      rlang::abort(paste0("`step_kpca_poly` failed with error:\n",
                          as.character(kprc)))
    }
  } else {
    kprc <- list(x_vars = col_names)
  }

  step_kpca_poly_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    num_comp = x$num_comp,
    degree = x$degree,
    scale_factor = x$scale_factor,
    offset = x$offset,
    res = kprc,
    prefix = x$prefix,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_kpca_poly <- function(object, new_data, ...) {
  if (object$num_comp > 0) {
    pca_vars <- colnames(environment(object$res@apply)$indata)
    comps <- object$res@apply(
      dimRed::dimRedData(as.data.frame(new_data[, pca_vars, drop = FALSE]))
    )@data
    comps <- comps[, 1:object$num_comp, drop = FALSE]
    comps <- check_name(comps, new_data, object)
    new_data <- bind_cols(new_data, as_tibble(comps))
    new_data <- new_data[, !(colnames(new_data) %in% pca_vars), drop = FALSE]
  }
  as_tibble(new_data)
}

print.step_kpca_poly <- function(x, width = max(20, options()$width - 40), ...) {
  if (x$trained) {
    if (x$num_comp == 0) {
      cat("No kPCA components were extracted.\n")
    } else {
      cat("Polynomial kernel PCA (", x$res@pars$kernel, ") extraction with ", sep = "")
      cat(format_ch_vec(colnames(x$res@org.data), width = width))
    }
  } else {
    cat("Polynomial kernel PCA extraction with ", sep = "")
    cat(format_selectors(x$terms, width = width))
  }
  if (x$trained) cat(" [trained]\n") else cat("\n")
  invisible(x)
}


#' @rdname step_kpca_poly
#' @param x A `step_kpca_poly` object
#' @export
tidy.step_kpca_poly <- function(x, ...) {
  if (is_trained(x)) {
    if (x$num_comp > 0) {
      res <- tibble(terms = colnames(x$res@org.data))
    } else {
      res <- tibble(terms = x$res$x_vars)
    }
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names)
  }
  res$id <- x$id
  res
}


#' @rdname tunable.step
#' @export
tunable.step_kpca_poly <- function(x, ...) {
  tibble::tibble(
    name = c("num_comp", "degree", "scale_factor", "offset"),
    call_info = list(
      list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
      list(pkg = "dials", fun = "degree"),
      list(pkg = "dials", fun = "scale_factor"),
      list(pkg = "dials", fun = "offset")
    ),
    source = "recipe",
    component = "step_kpca_poly",
    component_id = x$id
  )
}


#' @rdname required_pkgs.step
#' @export
required_pkgs.step_kpca_poly <- function(x, ...) {
  c("dimRed", "kernlab")
}