1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
#' Polynomial Kernel PCA Signal Extraction
#'
#' `step_kpca_poly` a *specification* of a recipe step that
#' will convert numeric data into one or more principal components
#' using a polynomial kernel basis expansion.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#' variables will be used to compute the components. See
#' [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned? By default, the function assumes
#' that the new principal component columns created by the original
#' variables will be used as predictors in a model.
#' @param num_comp The number of PCA components to retain as new
#' predictors. If `num_comp` is greater than the number of columns
#' or the number of possible components, a smaller value will be
#' used.
#' @param degree,scale_factor,offset Numeric values for the polynomial kernel function.
#' @param res An S4 [kernlab::kpca()] object is stored
#' here once this preprocessing step has be trained by
#' [prep.recipe()].
#' @param prefix A character string that will be the prefix to the
#' resulting new variables. See notes below.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected).
#' @keywords datagen
#' @concept preprocessing
#' @concept pca
#' @concept projection_methods
#' @concept kernel_methods
#' @concept basis_expansion
#' @export
#' @details Kernel principal component analysis (kPCA) is an
#' extension of a PCA analysis that conducts the calculations in a
#' broader dimensionality defined by a kernel function. For
#' example, if a quadratic kernel function were used, each variable
#' would be represented by its original values as well as its
#' square. This nonlinear mapping is used during the PCA analysis
#' and can potentially help find better representations of the
#' original data.
#'
#' This step requires the \pkg{dimRed} and \pkg{kernlab} packages.
#' If not installed, the step will stop with a note about installing
#' these packages.
#'
#' As with ordinary PCA, it is important to standardize the
#' variables prior to running PCA (`step_center` and
#' `step_scale` can be used for this purpose).
#'
#' The argument `num_comp` controls the number of components that
#' will be retained (the original variables that are used to derive
#' the components are removed from the data). The new components
#' will have names that begin with `prefix` and a sequence of
#' numbers. The variable names are padded with zeros. For example,
#' if `num_comp < 10`, their names will be `kPC1` -
#' `kPC9`. If `num_comp = 101`, the names would be
#' `kPC001` - `kPC101`.
#'
#' @references Scholkopf, B., Smola, A., and Muller, K. (1997).
#' Kernel principal component analysis. *Lecture Notes in
#' Computer Science*, 1327, 583-588.
#'
#' Karatzoglou, K., Smola, A., Hornik, K., and Zeileis, A. (2004).
#' kernlab - An S4 package for kernel methods in R. *Journal
#' of Statistical Software*, 11(1), 1-20.
#'
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' kpca_trans <- rec %>%
#' step_YeoJohnson(all_predictors()) %>%
#' step_normalize(all_predictors()) %>%
#' step_kpca_poly(all_predictors())
#'
#' if (require(dimRed) & require(kernlab)) {
#' kpca_estimates <- prep(kpca_trans, training = biomass_tr)
#'
#' kpca_te <- bake(kpca_estimates, biomass_te)
#'
#' rng <- extendrange(c(kpca_te$kPC1, kpca_te$kPC2))
#' plot(kpca_te$kPC1, kpca_te$kPC2,
#' xlim = rng, ylim = rng)
#'
#' tidy(kpca_trans, number = 3)
#' tidy(kpca_estimates, number = 3)
#' }
#' @seealso [step_pca()] [step_ica()]
#' [step_isomap()] [recipe()] [prep.recipe()]
#' [bake.recipe()]
#'
step_kpca_poly <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
degree = 2,
scale_factor = 1,
offset = 1,
prefix = "kPC",
skip = FALSE,
id = rand_id("kpca_poly")) {
recipes_pkg_check(required_pkgs.step_kpca_poly())
add_step(
recipe,
step_kpca_poly_new(
terms = ellipse_check(...),
role = role,
trained = trained,
num_comp = num_comp,
res = res,
degree = degree,
scale_factor = scale_factor,
offset = offset,
prefix = prefix,
skip = skip,
id = id
)
)
}
step_kpca_poly_new <-
function(terms, role, trained, num_comp, res, degree, scale_factor, offset, prefix, skip, id) {
step(
subclass = "kpca_poly",
terms = terms,
role = role,
trained = trained,
num_comp = num_comp,
res = res,
degree = degree,
scale_factor = scale_factor,
offset = offset,
prefix = prefix,
skip = skip,
id = id
)
}
#' @export
prep.step_kpca_poly <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
if (x$num_comp > 0) {
kprc <-
dimRed::kPCA(
stdpars = c(
list(ndim = x$num_comp),
list(
kernel = "polydot",
kpar = list(degree = x$degree, scale = x$scale_factor, offset = x$offset)
)
)
)
kprc <-
try(
kprc@fun(
dimRed::dimRedData(as.data.frame(training[, col_names, drop = FALSE])),
kprc@stdpars
),
silent = TRUE
)
if (inherits(kprc, "try-error")) {
rlang::abort(paste0("`step_kpca_poly` failed with error:\n",
as.character(kprc)))
}
} else {
kprc <- list(x_vars = col_names)
}
step_kpca_poly_new(
terms = x$terms,
role = x$role,
trained = TRUE,
num_comp = x$num_comp,
degree = x$degree,
scale_factor = x$scale_factor,
offset = x$offset,
res = kprc,
prefix = x$prefix,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_kpca_poly <- function(object, new_data, ...) {
if (object$num_comp > 0) {
pca_vars <- colnames(environment(object$res@apply)$indata)
comps <- object$res@apply(
dimRed::dimRedData(as.data.frame(new_data[, pca_vars, drop = FALSE]))
)@data
comps <- comps[, 1:object$num_comp, drop = FALSE]
comps <- check_name(comps, new_data, object)
new_data <- bind_cols(new_data, as_tibble(comps))
new_data <- new_data[, !(colnames(new_data) %in% pca_vars), drop = FALSE]
}
as_tibble(new_data)
}
print.step_kpca_poly <- function(x, width = max(20, options()$width - 40), ...) {
if (x$trained) {
if (x$num_comp == 0) {
cat("No kPCA components were extracted.\n")
} else {
cat("Polynomial kernel PCA (", x$res@pars$kernel, ") extraction with ", sep = "")
cat(format_ch_vec(colnames(x$res@org.data), width = width))
}
} else {
cat("Polynomial kernel PCA extraction with ", sep = "")
cat(format_selectors(x$terms, width = width))
}
if (x$trained) cat(" [trained]\n") else cat("\n")
invisible(x)
}
#' @rdname step_kpca_poly
#' @param x A `step_kpca_poly` object
#' @export
tidy.step_kpca_poly <- function(x, ...) {
if (is_trained(x)) {
if (x$num_comp > 0) {
res <- tibble(terms = colnames(x$res@org.data))
} else {
res <- tibble(terms = x$res$x_vars)
}
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names)
}
res$id <- x$id
res
}
#' @rdname tunable.step
#' @export
tunable.step_kpca_poly <- function(x, ...) {
tibble::tibble(
name = c("num_comp", "degree", "scale_factor", "offset"),
call_info = list(
list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
list(pkg = "dials", fun = "degree"),
list(pkg = "dials", fun = "scale_factor"),
list(pkg = "dials", fun = "offset")
),
source = "recipe",
component = "step_kpca_poly",
component_id = x$id
)
}
#' @rdname required_pkgs.step
#' @export
required_pkgs.step_kpca_poly <- function(x, ...) {
c("dimRed", "kernlab")
}
|