File: lag.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (141 lines) | stat: -rw-r--r-- 4,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#' Create a lagged predictor
#'
#' `step_lag` creates a *specification* of a recipe step that
#'   will add new columns of lagged data. Lagged data will
#'   by default include NA values where the lag was induced.
#'   These can be removed with [step_naomit()], or you may
#'   specify an alternative filler value with the `default`
#'   argument.
#'
#' @param recipe A recipe object. The step will be added to the sequence of
#'   operations for this recipe.
#' @param ... One or more selector functions to choose which variables are
#'   affected by the step. See [selections()] for more details.
#' @param role Defaults to "predictor"
#' @param trained A logical to indicate if the quantities for preprocessing
#'   have been estimated.
#' @param lag A vector of positive integers. Each specified column will be
#'  lagged for each value in the vector.
#' @param prefix A prefix for generated column names, default to "lag_".
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @param default Passed to `dplyr::lag`, determines what fills empty rows
#'   left by lagging (defaults to NA).
#' @param id A character string that is unique to this step to identify it.
#' @param skip A logical. Should the step be skipped when the
#'  recipe is baked by [bake.recipe()]? While all operations are baked
#'  when [prep.recipe()] is run, some operations may not be able to be
#'  conducted on new data (e.g. processing the outcome variable(s)).
#'  Care should be taken when using `skip = TRUE` as it may affect
#'  the computations for subsequent operations
#' @return An updated version of `recipe` with the
#'   new step added to the sequence of existing steps (if any).
#' @details The step assumes that the data are already _in the proper sequential
#'  order_ for lagging.
#' @export
#' @rdname step_lag
#'
#' @examples
#' n <- 10
#' start <- as.Date('1999/01/01')
#' end <- as.Date('1999/01/10')
#'
#' df <- data.frame(x = runif(n),
#'                  index = 1:n,
#'                  day = seq(start, end, by = "day"))
#'
#' recipe(~ ., data = df) %>%
#'   step_lag(index, day, lag = 2:3) %>%
#'   prep(df) %>%
#'   bake(df)
#'
#' @seealso [recipe()] [prep.recipe()] [bake.recipe()] [step_naomit()]
step_lag <-
  function(recipe,
           ...,
           role = "predictor",
           trained = FALSE,
           lag = 1,
           prefix = "lag_",
           default = NA,
           columns = NULL,
           skip = FALSE,
           id = rand_id("lag")) {
    add_step(
      recipe,
      step_lag_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        lag = lag,
        default = default,
        prefix = prefix,
        columns = columns,
        skip = skip,
        id = id
      )
    )
  }

step_lag_new <-
  function(terms, role, trained, lag, default, prefix, columns, skip, id) {
    step(
      subclass = "lag",
      terms = terms,
      role = role,
      trained = trained,
      lag = lag,
      default = default,
      prefix = prefix,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_lag <- function(x, training, info = NULL, ...) {
  step_lag_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    lag = x$lag,
    default = x$default,
    prefix = x$prefix,
    columns = eval_select_recipes(x$terms, training, info),
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_lag <- function(object, new_data, ...) {

  if (!all(object$lag == as.integer(object$lag)))
    rlang::abort("step_lag requires 'lag' argument to be integer valued.")

  make_call <- function(col, lag_val) {
    call2(
      "lag",
      x = sym(col),
      n = lag_val,
      default = object$default,
      .ns = "dplyr"
    )
  }

  grid <- expand.grid(col = object$columns, lag_val = object$lag,
                      stringsAsFactors = FALSE)
  calls <- purrr::map2(grid$col, grid$lag_val, make_call)
  newname <- paste0(object$prefix, grid$lag_val, "_", grid$col)
  calls <- check_name(calls, new_data, object, newname, TRUE)

  as_tibble(mutate(new_data, !!!calls))
}

print.step_lag <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Lagging ",  sep = "")
    printer(x$columns, x$terms, x$trained, width = width)
    invisible(x)
  }