1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#' Linear Combination Filter
#'
#' `step_lincomb` creates a *specification* of a recipe
#' step that will potentially remove numeric variables that have
#' linear combinations between them.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param max_steps A value.
#' @param removals A character string that contains the names of
#' columns that should be removed. These values are not determined
#' until [prep.recipe()] is called.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which
#' is the columns that will be removed.
#' @keywords datagen
#' @concept preprocessing
#' @concept variable_filters
#' @author Max Kuhn, Kirk Mettler, and Jed Wing
#' @export
#'
#' @details This step finds exact linear combinations between two
#' or more variables and recommends which column(s) should be
#' removed to resolve the issue. This algorithm may need to be
#' applied multiple times (as defined by `max_steps`).
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass$new_1 <- with(biomass,
#' .1*carbon - .2*hydrogen + .6*sulfur)
#' biomass$new_2 <- with(biomass,
#' .5*carbon - .2*oxygen + .6*nitrogen)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
#' sulfur + new_1 + new_2,
#' data = biomass_tr)
#'
#' lincomb_filter <- rec %>%
#' step_lincomb(all_predictors())
#'
#' lincomb_filter_trained <- prep(lincomb_filter, training = biomass_tr)
#' lincomb_filter_trained
#'
#' tidy(lincomb_filter, number = 1)
#' tidy(lincomb_filter_trained, number = 1)
#' @seealso [step_nzv()][step_corr()]
#' [recipe()] [prep.recipe()]
#' [bake.recipe()]
step_lincomb <-
function(recipe,
...,
role = NA,
trained = FALSE,
max_steps = 5,
removals = NULL,
skip = FALSE,
id = rand_id("lincomb")) {
add_step(
recipe,
step_lincomb_new(
terms = ellipse_check(...),
role = role,
trained = trained,
max_steps = max_steps,
removals = removals,
skip = skip,
id = id
)
)
}
step_lincomb_new <-
function(terms, role, trained, max_steps, removals, skip, id) {
step(
subclass = "lincomb",
terms = terms,
role = role,
trained = trained,
max_steps = max_steps,
removals = removals,
skip = skip,
id = id
)
}
#' @export
prep.step_lincomb <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
filter <- iter_lc_rm(x = training[, col_names],
max_steps = x$max_steps)
step_lincomb_new(
terms = x$terms,
role = x$role,
trained = TRUE,
max_steps = x$max_steps,
removals = filter,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_lincomb <- function(object, new_data, ...) {
if (length(object$removals) > 0)
new_data <- new_data[, !(colnames(new_data) %in% object$removals)]
as_tibble(new_data)
}
print.step_lincomb <-
function(x, width = max(20, options()$width - 36), ...) {
if (x$trained) {
if (length(x$removals) > 0) {
cat("Linear combination filter removed ")
cat(format_ch_vec(x$removals, width = width))
} else
cat("Linear combination filter removed no terms")
} else {
cat("Linear combination filter on ", sep = "")
cat(format_selectors(x$terms, width = width))
}
if (x$trained)
cat(" [trained]\n")
else
cat("\n")
invisible(x)
}
recommend_rm <- function(x, eps = 1e-6, ...) {
if (!is.matrix(x))
x <- as.matrix(x)
if (is.null(colnames(x)))
rlang::abort("`x` should have column names")
qr_decomp <- qr(x)
qr_decomp_R <- qr.R(qr_decomp) # extract R matrix
num_cols <- ncol(qr_decomp_R) # number of columns in R
rank <- qr_decomp$rank # number of independent columns
pivot <- qr_decomp$pivot # get the pivot vector
if (is.null(num_cols) || rank == num_cols) {
rm_list <- character(0) # there are no linear combinations
} else {
p1 <- 1:rank
X <- qr_decomp_R[p1, p1] # extract the independent columns
Y <- qr_decomp_R[p1, -p1, drop = FALSE] # extract the dependent columns
b <- qr(X) # factor the independent columns
b <- qr.coef(b, Y) # get regression coefficients of
# the dependent columns
b[abs(b) < eps] <- 0 # zap small values
# generate a list with one element for each dependent column
combos <- lapply(1:ncol(Y),
function(i)
c(pivot[rank + i], pivot[which(b[, i] != 0)]))
rm_list <- unlist(lapply(combos, function(x)
x[1]))
rm_list <- colnames(x)[rm_list]
}
rm_list
}
iter_lc_rm <- function(x,
max_steps = 10,
verbose = FALSE) {
if (is.null(colnames(x)))
rlang::abort("`x` should have column names")
orig_names <- colnames(x)
if (!is.matrix(x))
x <- as.matrix(x)
# converting to matrix may alter column names
name_df <- data.frame(orig = orig_names,
current = colnames(x),
stringsAsFactors = FALSE)
for (i in 1:max_steps) {
if (verbose)
cat(i)
if (i == max_steps)
break ()
lcs <- recommend_rm(x)
if (length(lcs) == 0)
break ()
else {
if (verbose)
cat(" removing", length(lcs), "\n")
x <- x[, !(colnames(x) %in% lcs)]
}
}
if (verbose)
cat("\n")
name_df <- name_df[!(name_df$current %in% colnames(x)), ]
name_df$orig
}
#' @rdname step_lincomb
#' @param x A `step_lincomb` object.
#' @export
tidy.step_lincomb <- tidy_filter
|