File: lincombo.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (217 lines) | stat: -rw-r--r-- 6,407 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#' Linear Combination Filter
#'
#' `step_lincomb` creates a *specification* of a recipe
#'  step that will potentially remove numeric variables that have
#'  linear combinations between them.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#'  variables are affected by the step. See [selections()]
#'  for more details. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this step since no new variables are
#'  created.
#' @param max_steps A value.
#' @param removals A character string that contains the names of
#'  columns that should be removed. These values are not determined
#'  until [prep.recipe()] is called.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` which
#'  is the columns that will be removed.
#' @keywords datagen
#' @concept preprocessing
#' @concept variable_filters
#' @author Max Kuhn, Kirk Mettler, and Jed Wing
#' @export
#'
#' @details This step finds exact linear combinations between two
#'  or more variables and recommends which column(s) should be
#'  removed to resolve the issue. This algorithm may need to be
#'  applied multiple times (as defined by `max_steps`).
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass$new_1 <- with(biomass,
#'                       .1*carbon - .2*hydrogen + .6*sulfur)
#' biomass$new_2 <- with(biomass,
#'                       .5*carbon - .2*oxygen + .6*nitrogen)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
#'                 sulfur + new_1 + new_2,
#'               data = biomass_tr)
#'
#' lincomb_filter <- rec %>%
#'   step_lincomb(all_predictors())
#'
#' lincomb_filter_trained <- prep(lincomb_filter, training = biomass_tr)
#' lincomb_filter_trained
#'
#' tidy(lincomb_filter, number = 1)
#' tidy(lincomb_filter_trained, number = 1)
#' @seealso [step_nzv()][step_corr()]
#'   [recipe()] [prep.recipe()]
#'   [bake.recipe()]

step_lincomb <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           max_steps = 5,
           removals = NULL,
           skip = FALSE,
           id = rand_id("lincomb")) {
    add_step(
      recipe,
      step_lincomb_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        max_steps = max_steps,
        removals = removals,
        skip = skip,
        id = id
      )
    )
  }

step_lincomb_new <-
  function(terms, role, trained, max_steps, removals, skip, id) {
    step(
      subclass = "lincomb",
      terms = terms,
      role = role,
      trained = trained,
      max_steps = max_steps,
      removals = removals,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_lincomb <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)

  check_type(training[, col_names])

  filter <- iter_lc_rm(x = training[, col_names],
                       max_steps = x$max_steps)

  step_lincomb_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    max_steps = x$max_steps,
    removals = filter,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_lincomb <- function(object, new_data, ...) {
  if (length(object$removals) > 0)
    new_data <- new_data[, !(colnames(new_data) %in% object$removals)]
  as_tibble(new_data)
}

print.step_lincomb <-
  function(x,  width = max(20, options()$width - 36), ...) {
    if (x$trained) {
      if (length(x$removals) > 0) {
        cat("Linear combination filter removed ")
        cat(format_ch_vec(x$removals, width = width))
      } else
        cat("Linear combination filter removed no terms")
    } else {
      cat("Linear combination filter on ", sep = "")
      cat(format_selectors(x$terms, width = width))
    }
    if (x$trained)
      cat(" [trained]\n")
    else
      cat("\n")
    invisible(x)
  }


recommend_rm <- function(x, eps  = 1e-6, ...) {
  if (!is.matrix(x))
    x <- as.matrix(x)
  if (is.null(colnames(x)))
    rlang::abort("`x` should have column names")

  qr_decomp <- qr(x)
  qr_decomp_R <- qr.R(qr_decomp)           # extract R matrix
  num_cols <- ncol(qr_decomp_R)            # number of columns in R
  rank <- qr_decomp$rank                   # number of independent columns
  pivot <- qr_decomp$pivot                 # get the pivot vector

  if (is.null(num_cols) || rank == num_cols) {
    rm_list <- character(0)                 # there are no linear combinations
  } else {
    p1 <- 1:rank
    X <- qr_decomp_R[p1, p1]                # extract the independent columns
    Y <- qr_decomp_R[p1, -p1, drop = FALSE] # extract the dependent columns
    b <- qr(X)                              # factor the independent columns
    b <- qr.coef(b, Y)                      # get regression coefficients of
                                            # the dependent columns
    b[abs(b) < eps] <- 0                    # zap small values

    # generate a list with one element for each dependent column
    combos <- lapply(1:ncol(Y),
                     function(i)
                       c(pivot[rank + i], pivot[which(b[, i] != 0)]))
    rm_list <- unlist(lapply(combos, function(x)
      x[1]))
    rm_list <- colnames(x)[rm_list]
  }
  rm_list
}

iter_lc_rm <- function(x,
                       max_steps = 10,
                       verbose = FALSE) {
  if (is.null(colnames(x)))
    rlang::abort("`x` should have column names")

  orig_names <- colnames(x)
  if (!is.matrix(x))
    x <- as.matrix(x)

  # converting to matrix may alter column names
  name_df <- data.frame(orig = orig_names,
                        current = colnames(x),
                        stringsAsFactors = FALSE)

  for (i in 1:max_steps) {
    if (verbose)
      cat(i)
    if (i == max_steps)
      break ()
    lcs <- recommend_rm(x)
    if (length(lcs) == 0)
      break ()
    else {
      if (verbose)
        cat(" removing", length(lcs), "\n")
      x <- x[, !(colnames(x) %in% lcs)]
    }
  }
  if (verbose)
    cat("\n")
  name_df <- name_df[!(name_df$current %in% colnames(x)), ]
  name_df$orig
}


#' @rdname step_lincomb
#' @param x A `step_lincomb` object.
#' @export
tidy.step_lincomb <- tidy_filter