1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#' Impute Numeric Data Below the Threshold of Measurement
#'
#' `step_lowerimpute` creates a *specification* of a recipe step
#' designed for cases where the non-negative numeric data cannot be
#' measured below a known value. In these cases, one method for
#' imputing the data is to substitute the truncated value by a
#' random uniform number between zero and the truncation point.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param threshold A named numeric vector of lower bounds. This is
#' `NULL` until computed by [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected) and `value` for the estimated
#' threshold.
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details `step_lowerimpute` estimates the variable minimums
#' from the data used in the `training` argument of `prep.recipe`.
#' `bake.recipe` then simulates a value for any data at the minimum
#' with a random uniform value between zero and the minimum.
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(biomass)
#'
#' ## Truncate some values to emulate what a lower limit of
#' ## the measurement system might look like
#'
#' biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
#' biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' impute_rec <- rec %>%
#' step_lowerimpute(carbon, hydrogen)
#'
#' tidy(impute_rec, number = 1)
#'
#' impute_rec <- prep(impute_rec, training = biomass_tr)
#'
#' tidy(impute_rec, number = 1)
#'
#' transformed_te <- bake(impute_rec, biomass_te)
#'
#' plot(transformed_te$carbon, biomass_te$carbon,
#' ylab = "pre-imputation", xlab = "imputed")
step_lowerimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("lowerimpute")) {
add_step(
recipe,
step_lowerimpute_new(
terms = ellipse_check(...),
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
)
}
step_lowerimpute_new <-
function(terms, role, trained, threshold, skip, id) {
step(
subclass = "lowerimpute",
terms = terms,
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
}
#' @export
prep.step_lowerimpute <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
threshold <-
vapply(training[, col_names],
min,
numeric(1),
na.rm = TRUE)
if (any(threshold < 0))
rlang::abort(
paste0(
"Some columns have negative values. Lower bound ",
"imputation is intended for data bounded at zero."
)
)
step_lowerimpute_new(
terms = x$terms,
role = x$role,
trained = TRUE,
threshold = threshold,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_lowerimpute <- function(object, new_data, ...) {
for (i in names(object$threshold)) {
affected <- which(new_data[[i]] <= object$threshold[[i]])
if (length(affected) > 0)
new_data[[i]][affected] <- runif(length(affected),
max = object$threshold[[i]])
}
as_tibble(new_data)
}
print.step_lowerimpute <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Lower Bound Imputation for ", sep = "")
printer(names(x$threshold), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_lowerimpute
#' @param x A `step_lowerimpute` object.
#' @export
tidy.step_lowerimpute <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$threshold),
value = unname(x$threshold))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, value = na_dbl)
}
res$id <- x$id
res
}
|