1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#' Impute Numeric Data Using the Mean
#'
#' `step_meanimpute` creates a *specification* of a recipe step that will
#' substitute missing values of numeric variables by the training set mean of
#' those variables.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param means A named numeric vector of means. This is `NULL` until computed
#' by [prep.recipe()]. Note that, if the original data are integers, the mean
#' will be converted to an integer to maintain the same data type.
#' @param trim The fraction (0 to 0.5) of observations to be trimmed from each
#' end of the variables before the mean is computed. Values of trim outside
#' that range are taken as the nearest endpoint.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the selectors or variables selected) and `model` (the mean
#' value).
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details `step_meanimpute` estimates the variable means from the data used
#' in the `training` argument of `prep.recipe`. `bake.recipe` then applies the
#' new values to new data sets using these averages.
#' @examples
#' library(modeldata)
#' data("credit_data")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[ in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_meanimpute(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' credit_te[missing_examples,]
#' imputed_te[missing_examples, names(credit_te)]
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_meanimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
trim = 0,
skip = FALSE,
id = rand_id("meanimpute")) {
add_step(
recipe,
step_meanimpute_new(
terms = ellipse_check(...),
role = role,
trained = trained,
means = means,
trim = trim,
skip = skip,
id = id
)
)
}
step_meanimpute_new <-
function(terms, role, trained, means, trim, skip, id) {
step(
subclass = "meanimpute",
terms = terms,
role = role,
trained = trained,
means = means,
trim = trim,
skip = skip,
id = id
)
}
#' @export
prep.step_meanimpute <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
means <- lapply(training[, col_names], mean, trim = x$trim, na.rm = TRUE)
means <- purrr::map2(means, training[, col_names], cast)
step_meanimpute_new(
terms = x$terms,
role = x$role,
trained = TRUE,
means,
trim = x$trim,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_meanimpute <- function(object, new_data, ...) {
for (i in names(object$means)) {
if (any(is.na(new_data[[i]])))
new_data[is.na(new_data[[i]]), i] <- object$means[[i]]
}
as_tibble(new_data)
}
print.step_meanimpute <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Mean Imputation for ", sep = "")
printer(names(x$means), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_meanimpute
#' @param x A `step_meanimpute` object.
#' @export
tidy.step_meanimpute <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$means),
model = unlist(x$means))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = na_dbl)
}
res$id <- x$id
res
}
#' @rdname tunable.step
#' @export
tunable.step_meanimpute <- function(x, ...) {
tibble::tibble(
name = "trim",
call_info = list(
list(pkg = "dials", fun = "trim_amount")
),
source = "recipe",
component = "step_meanimpute",
component_id = x$id
)
}
|