1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
#' Impute Numeric Data Using the Median
#'
#' `step_medianimpute` creates a *specification* of a recipe step that will
#' substitute missing values of numeric variables by the training set median of
#' those variables.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param medians A named numeric vector of medians. This is `NULL` until
#' computed by [prep.recipe()]. Note that, if the original data are integers,
#' the median will be converted to an integer to maintain the same data type.
#' @return An updated version of `recipe` with the new step added to the
#' sequence of existing steps (if any). For the `tidy` method, a tibble with
#' columns `terms` (the selectors or variables selected) and `model` (the
#' median value).
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details `step_medianimpute` estimates the variable medians from the data
#' used in the `training` argument of `prep.recipe`. `bake.recipe` then applies
#' the new values to new data sets using these medians.
#' @examples
#' library(modeldata)
#' data("credit_data")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[ in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_medianimpute(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' credit_te[missing_examples,]
#' imputed_te[missing_examples, names(credit_te)]
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_medianimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("medianimpute")) {
add_step(
recipe,
step_medianimpute_new(
terms = ellipse_check(...),
role = role,
trained = trained,
medians = medians,
skip = skip,
id = id
)
)
}
step_medianimpute_new <-
function(terms, role, trained, medians, skip, id) {
step(
subclass = "medianimpute",
terms = terms,
role = role,
trained = trained,
medians = medians,
skip = skip,
id = id
)
}
#' @export
prep.step_medianimpute <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
medians <- lapply(training[, col_names], median, na.rm = TRUE)
medians <- purrr::map2(medians, training[, col_names], cast)
step_medianimpute_new(
terms = x$terms,
role = x$role,
trained = TRUE,
medians = medians,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_medianimpute <- function(object, new_data, ...) {
for (i in names(object$medians)) {
if (any(is.na(new_data[[i]])))
new_data[is.na(new_data[[i]]), i] <- object$medians[[i]]
}
as_tibble(new_data)
}
print.step_medianimpute <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Median Imputation for ", sep = "")
printer(names(x$medians), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_medianimpute
#' @param x A `step_medianimpute` object.
#' @export
tidy.step_medianimpute <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$medians),
model = unlist(x$medians))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = na_dbl)
}
res$id <- x$id
res
}
|