File: medianimpute.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (137 lines) | stat: -rw-r--r-- 4,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#' Impute Numeric Data Using the Median
#'
#' `step_medianimpute` creates a *specification* of a recipe step that will
#'  substitute missing values of numeric variables by the training set median of
#'  those variables.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which variables are
#'  affected by the step. See [selections()] for more details. For the `tidy`
#'  method, these are not currently used.
#' @param role Not used by this step since no new variables are created.
#' @param medians A named numeric vector of medians. This is `NULL` until
#'  computed by [prep.recipe()]. Note that, if the original data are integers,
#'  the median will be converted to an integer to maintain the same data type.
#' @return An updated version of `recipe` with the new step added to the
#'  sequence of existing steps (if any). For the `tidy` method, a tibble with
#'  columns `terms` (the selectors or variables selected) and `model` (the
#'  median value).
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details `step_medianimpute` estimates the variable medians from the data
#'  used in the `training` argument of `prep.recipe`. `bake.recipe` then applies
#'  the new values to new data sets using these medians.
#' @examples
#' library(modeldata)
#' data("credit_data")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[ in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#'   step_medianimpute(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' credit_te[missing_examples,]
#' imputed_te[missing_examples, names(credit_te)]
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)

step_medianimpute <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           medians = NULL,
           skip = FALSE,
           id = rand_id("medianimpute")) {
    add_step(
      recipe,
      step_medianimpute_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        medians = medians,
        skip = skip,
        id = id
      )
    )
  }

step_medianimpute_new <-
  function(terms, role, trained, medians, skip, id) {
    step(
      subclass = "medianimpute",
      terms = terms,
      role = role,
      trained = trained,
      medians = medians,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_medianimpute <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)

  check_type(training[, col_names])

  medians <- lapply(training[, col_names], median, na.rm = TRUE)
  medians <- purrr::map2(medians, training[, col_names], cast)

  step_medianimpute_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    medians = medians,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_medianimpute <- function(object, new_data, ...) {
  for (i in names(object$medians)) {
    if (any(is.na(new_data[[i]])))
      new_data[is.na(new_data[[i]]), i] <- object$medians[[i]]
  }
  as_tibble(new_data)
}

print.step_medianimpute <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Median Imputation for ", sep = "")
    printer(names(x$medians), x$terms, x$trained, width = width)
    invisible(x)
  }

#' @rdname step_medianimpute
#' @param x A `step_medianimpute` object.
#' @export
tidy.step_medianimpute <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = names(x$medians),
                  model = unlist(x$medians))
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, model = na_dbl)
  }
  res$id <- x$id
  res
}