1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#' Check for Missing Values
#'
#' `check_missing` creates a *specification* of a recipe
#' operation that will check if variables contain missing values.
#'
#' @param recipe A recipe object. The check will be added to the
#' sequence of operations for this recipe.
#' @param ... One or more selector functions to choose which
#' variables are checked in the check See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this check since no new variables are
#' created.
#' @param trained A logical for whether the selectors in `...`
#' have been resolved by [prep()].
#' @param columns A character string of variable names that will
#' be populated (eventually) by the terms argument.
#' @param id A character string that is unique to this step to identify it.
#' @param skip A logical. Should the check be skipped when the
#' recipe is baked by [bake.recipe()]? While all operations are baked
#' when [prep.recipe()] is run, some operations may not be able to be
#' conducted on new data (e.g. processing the outcome variable(s)).
#' Care should be taken when using `skip = TRUE` as it may affect
#' the computations for subsequent operations.
#' @return An updated version of `recipe` with the new check
#' added to the sequence of existing operations (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected).
#' @export
#' @details This check will break the `bake` function if any of the checked
#' columns does contain `NA` values. If the check passes, nothing is changed
#' to the data.
#' @examples
#' library(modeldata)
#' data(credit_data)
#' is.na(credit_data) %>% colSums()
#'
#' # If the test passes, `new_data` is returned unaltered
#' recipe(credit_data) %>%
#' check_missing(Age, Expenses) %>%
#' prep() %>%
#' bake(credit_data)
#'
#' # If your training set doesn't pass, prep() will stop with an error
#'
#' \dontrun{
#' recipe(credit_data) %>%
#' check_missing(Income) %>%
#' prep()
#' }
#'
#' # If `new_data` contain missing values, the check will stop bake()
#'
#' train_data <- credit_data %>% dplyr::filter(Income > 150)
#' test_data <- credit_data %>% dplyr::filter(Income <= 150 | is.na(Income))
#'
#' rp <- recipe(train_data) %>%
#' check_missing(Income) %>%
#' prep()
#'
#' bake(rp, train_data)
#' \dontrun{
#' bake(rp, test_data)
#' }
check_missing <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("missing")) {
add_check(
recipe,
check_missing_new(
terms = ellipse_check(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
check_missing_new <-
function(terms, role, trained, columns, skip, id) {
check(subclass = "missing",
prefix = "check_",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id)
}
prep.check_missing <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_missing_new(terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id)
}
bake.check_missing <- function(object, new_data, ...) {
col_names <- object$columns
subset_to_check <- new_data[col_names]
nr_na <- colSums(is.na(subset_to_check))
if (any(nr_na > 0)) {
with_na <- names(nr_na[nr_na > 0])
with_na_str <- paste(paste0("`", with_na, "`"), collapse = ", ")
rlang::abort(paste0("The following columns contain missing values: ",
with_na_str, "."))
}
new_data
}
print.check_missing <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Check missing values for ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname check_missing
#' @param x A `check_missing` object.
#' @export
tidy.check_missing <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = x$columns)
} else {
res <- tibble(terms = sel2char(x$terms))
}
res$id <- x$id
res
}
|