1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
#' Add new variables using `mutate`
#'
#' `step_mutate` creates a *specification* of a recipe step
#' that will add variables using [dplyr::mutate()].
#'
#' @inheritParams step_center
#' @param ... Name-value pairs of expressions. See [dplyr::mutate()].
#' If the argument is not named, the expression is converted to
#' a column name.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned? By default, the function assumes
#' that the new dimension columns created by the original variables
#' will be used as predictors in a model.
#' @param inputs Quosure(s) of `...`.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `values` which
#' contains the `mutate` expressions as character strings
#' (and are not reparsable).
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!`) to embed
#' the value of the object in the expression (to be portable
#' between sessions). See the examples.
#' @keywords datagen
#' @concept preprocessing
#' @concept transformation_methods
#' @export
#' @examples
#' rec <-
#' recipe( ~ ., data = iris) %>%
#' step_mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' # Embedding objects:
#' const <- 1.414
#'
#' qq_rec <-
#' recipe( ~ ., data = iris) %>%
#' step_mutate(
#' bad_approach = Sepal.Width * const,
#' best_approach = Sepal.Width * !!const
#' ) %>%
#' prep(training = iris)
#'
#' bake(qq_rec, new_data = NULL, contains("appro")) %>% slice(1:4)
#'
#' # The difference:
#' tidy(qq_rec, number = 1)
step_mutate <- function(
recipe, ...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate")
) {
inputs <- enquos(..., .named = TRUE)
add_step(
recipe,
step_mutate_new(
terms = terms,
trained = trained,
role = role,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_mutate_new <-
function(terms, role, trained, inputs, skip, id) {
step(
subclass = "mutate",
terms = terms,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_mutate <- function(x, training, info = NULL, ...) {
step_mutate_new(
terms = x$terms,
trained = TRUE,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_mutate <- function(object, new_data, ...) {
dplyr::mutate(new_data, !!!object$inputs)
}
print.step_mutate <-
function(x, width = max(20, options()$width - 35), ...) {
cat("Variable mutation for ",
paste0(names(x$inputs), collapse = ", "),
sep = "")
if (x$trained) {
cat(" [trained]\n")
} else {
cat("\n")
}
invisible(x)
}
#' @rdname step_mutate
#' @param x A `step_mutate` object
#' @export
tidy.step_mutate <- function(x, ...) {
var_expr <- map(x$inputs, quo_get_expr)
var_expr <- map_chr(var_expr, quo_text, width = options()$width, nlines = 1)
tibble(
terms = names(x$inputs),
value = var_expr,
id = rep(x$id, length(x$inputs))
)
}
|