1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
#' Center and scale numeric data
#'
#' `step_normalize` creates a *specification* of a recipe
#' step that will normalize numeric data to have a standard
#' deviation of one and a mean of zero.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param means A named numeric vector of means. This is
#' `NULL` until computed by [prep.recipe()].
#' @param sds A named numeric vector of standard deviations This
#' is `NULL` until computed by [prep.recipe()].
#' @param na_rm A logical value indicating whether `NA`
#' values should be removed when computing the standard deviation and mean.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected), `value` (the
#' standard deviations and means), and `statistic` for the type of value.
#' @keywords datagen
#' @concept preprocessing
#' @concept normalization_methods
#' @export
#' @details Centering data means that the average of a variable is subtracted
#' from the data. Scaling data means that the standard deviation of a variable
#' is divided out of the data. `step_normalize` estimates the variable standard
#' deviations and means from the data used in the `training` argument of
#' `prep.recipe`. `bake.recipe` then applies the scaling to new data sets using
#' these estimates.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' norm_trans <- rec %>%
#' step_normalize(carbon, hydrogen)
#'
#' norm_obj <- prep(norm_trans, training = biomass_tr)
#'
#' transformed_te <- bake(norm_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#' tidy(norm_trans, number = 1)
#' tidy(norm_obj, number = 1)
#'
step_normalize <-
function(recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
sds = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("normalize")) {
add_step(
recipe,
step_normalize_new(
terms = ellipse_check(...),
role = role,
trained = trained,
means = means,
sds = sds,
na_rm = na_rm,
skip = skip,
id = id
)
)
}
step_normalize_new <-
function(terms, role, trained, means, sds, na_rm, skip, id) {
step(
subclass = "normalize",
terms = terms,
role = role,
trained = trained,
means = means,
sds = sds,
na_rm = na_rm,
skip = skip,
id = id
)
}
#' @export
prep.step_normalize <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
means <- vapply(training[, col_names], mean, c(mean = 0), na.rm = x$na_rm)
sds <- vapply(training[, col_names], sd, c(sd = 0), na.rm = x$na_rm)
step_normalize_new(
terms = x$terms,
role = x$role,
trained = TRUE,
means = means,
sds = sds,
na_rm = x$na_rm,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_normalize <- function(object, new_data, ...) {
res <- sweep(as.matrix(new_data[, names(object$means)]), 2, object$means, "-")
res <- sweep(res, 2, object$sds, "/")
res <- tibble::as_tibble(res)
new_data[, names(object$sds)] <- res
as_tibble(new_data)
}
print.step_normalize <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Centering and scaling for ", sep = "")
printer(names(x$sds), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_normalize
#' @param x A `step_normalize` object.
#' @export
tidy.step_normalize <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = c(names(x$means), names(x$sds)),
statistic = rep(c("mean", "sd"), each = length(x$sds)),
value = c(x$means, x$sds))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
statistic = na_chr,
value = na_dbl)
}
res$id <- x$id
res
}
|