1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#' Simple Value Assignments for Novel Factor Levels
#'
#' `step_novel` creates a *specification* of a recipe
#' step that will assign a previously unseen factor level to a
#' new value.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#' variables that will be affected by the step. These variables
#' should be character or factor types. See [selections()] for more
#' details. For the `tidy` method, these are not currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param new_level A single character value that will be assigned
#' to new factor levels.
#' @param objects A list of objects that contain the information
#' on factor levels that will be determined by [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' columns that will be affected) and `value` (the factor
#' levels that is used for the new value)
#' @keywords datagen
#' @concept preprocessing
#' @concept factors
#' @export
#' @details The selected variables are adjusted to have a new
#' level (given by `new_level`) that is placed in the last
#' position. During preparation there will be no data points
#' associated with this new level since all of the data have been
#' seen.
#'
#' Note that if the original columns are character, they will be
#' converted to factors by this step.
#'
#' Missing values will remain missing.
#'
#' If `new_level` is already in the data given to `prep`, an error
#' is thrown.
#'
#' @seealso [step_factor2string()], [step_string2factor()],
#' [dummy_names()], [step_regex()], [step_count()],
#' [step_ordinalscore()], [step_unorder()], [step_other()]
#' @examples
#' library(modeldata)
#' data(okc)
#'
#' okc_tr <- okc[1:30000,]
#' okc_te <- okc[30001:30006,]
#' okc_te$diet[3] <- "cannibalism"
#' okc_te$diet[4] <- "vampirism"
#'
#' rec <- recipe(~ diet + location, data = okc_tr)
#'
#' rec <- rec %>%
#' step_novel(diet, location)
#' rec <- prep(rec, training = okc_tr)
#'
#' processed <- bake(rec, okc_te)
#' tibble(old = okc_te$diet, new = processed$diet)
#'
#' tidy(rec, number = 1)
step_novel <-
function(recipe,
...,
role = NA,
trained = FALSE,
new_level = "new",
objects = NULL,
skip = FALSE,
id = rand_id("novel")) {
add_step(
recipe,
step_novel_new(
terms = ellipse_check(...),
role = role,
trained = trained,
new_level = new_level,
objects = objects,
skip = skip,
id = id
)
)
}
step_novel_new <-
function(terms, role, trained, new_level, objects, skip, id) {
step(
subclass = "novel",
terms = terms,
role = role,
trained = trained,
new_level = new_level,
objects = objects,
skip = skip,
id = id
)
}
get_existing_values <- function(x) {
if (is.character(x)) {
out <- unique(x)
attr(out, "is_ordered") <- FALSE
} else {
if (is.factor(x)) {
out <- levels(x)
attr(out, "is_ordered") <- is.ordered(x)
}
else
rlang::abort("Data should be either character or factor")
}
out
}
#' @export
prep.step_novel <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
col_check <- dplyr::filter(info, variable %in% col_names)
if (any(col_check$type != "nominal"))
rlang::abort(
paste0("Columns must be character or factor: ",
paste0(col_check$variable[col_check$type != "nominal"],
collapse = ", "))
)
# Get existing levels and their factor type (i.e. ordered)
objects <- lapply(training[, col_names], get_existing_values)
# Check to make sure that there are not duplicate levels
level_check <-
map_lgl(objects, function(x, y) y %in% x, y = x$new_level)
if (any(level_check))
rlang::abort(
paste0(
"Columns already contain the new level: ",
paste0(names(level_check)[level_check], collapse = ", ")
)
)
step_novel_new(
terms = x$terms,
role = x$role,
trained = TRUE,
new_level = x$new_level,
objects = objects,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_novel <- function(object, new_data, ...) {
for (i in names(object$objects)) {
new_data[[i]] <- ifelse(
# Preserve NA values by adding them to the list of existing
# possible values
!(new_data[[i]] %in% c(object$object[[i]], NA)),
object$new_level,
as.character(new_data[[i]])
)
new_data[[i]] <-
factor(new_data[[i]],
levels = c(object$object[[i]], object$new_level),
ordered = attributes(object$object[[i]])$is_ordered)
}
if (!is_tibble(new_data))
new_data <- as_tibble(new_data)
new_data
}
print.step_novel <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Novel factor level assignment for ", sep = "")
printer(names(x$objects), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_novel
#' @param x A `step_novel` object.
#' @export
tidy.step_novel <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$objects),
value = rep(x$new_level, length(x$objects)))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
value = rep(x$new_level, length(term_names)))
}
res$id <- x$id
res
}
|