1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
#' Natural Spline Basis Functions
#'
#' `step_ns` creates a *specification* of a recipe step
#' that will create new columns that are basis expansions of
#' variables using natural splines.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned?. By default, the function assumes
#' that the new columns created from the original variables will be
#' used as predictors in a model.
#' @param deg_free The degrees of freedom.
#' @param objects A list of [splines::ns()] objects
#' created once the step has been trained.
#' @param options A list of options for [splines::ns()]
#' which should not include `x` or `df`.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which is
#' the columns that will be affected and `holiday`.
#' @keywords datagen
#' @concept preprocessing
#' @concept basis_expansion
#' @export
#' @details `step_ns` can create new features from a single variable
#' that enable fitting routines to model this variable in a
#' nonlinear manner. The extent of the possible nonlinearity is
#' determined by the `df` or `knot` arguments of
#' [splines::ns()]. The original variables are removed
#' from the data and new columns are added. The naming convention
#' for the new variables is `varname_ns_1` and so on.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' with_splines <- rec %>%
#' step_ns(carbon, hydrogen)
#' with_splines <- prep(with_splines, training = biomass_tr)
#'
#' expanded <- bake(with_splines, biomass_te)
#' expanded
#' @seealso [step_poly()] [recipe()]
#' [prep.recipe()] [bake.recipe()]
step_ns <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
objects = NULL,
deg_free = 2,
options = list(),
skip = FALSE,
id = rand_id("ns")) {
add_step(
recipe,
step_ns_new(
terms = ellipse_check(...),
trained = trained,
deg_free = deg_free,
role = role,
objects = objects,
options = options,
skip = skip,
id = id
)
)
}
step_ns_new <-
function(terms, role, trained, deg_free, objects, options, skip, id) {
step(
subclass = "ns",
terms = terms,
role = role,
trained = trained,
deg_free = deg_free,
objects = objects,
options = options,
skip = skip,
id = id
)
}
ns_wrapper <- function(x, args) {
if (!("Boundary.knots" %in% names(args)))
args$Boundary.knots <- range(x)
args$x <- x
ns_obj <- do.call("ns", args)
## don't need to save the original data so keep 1 row
out <- matrix(NA, ncol = ncol(ns_obj), nrow = 1)
class(out) <- c("ns", "basis", "matrix")
attr(out, "knots") <- attr(ns_obj, "knots")[]
attr(out, "Boundary.knots") <- attr(ns_obj, "Boundary.knots")
attr(out, "intercept") <- attr(ns_obj, "intercept")
out
}
#' @export
prep.step_ns <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
opt <- x$options
opt$df <- x$deg_free
obj <- lapply(training[, col_names], ns_wrapper, opt)
for (i in seq(along.with = col_names))
attr(obj[[i]], "var") <- col_names[i]
step_ns_new(
terms = x$terms,
role = x$role,
trained = TRUE,
deg_free = x$deg_free,
objects = obj,
options = x$options,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_ns <- function(object, new_data, ...) {
## pre-allocate a matrix for the basis functions.
new_cols <- vapply(object$objects, ncol, c(int = 1L))
ns_values <-
matrix(NA, nrow = nrow(new_data), ncol = sum(new_cols))
colnames(ns_values) <- rep("", sum(new_cols))
strt <- 1
for (i in names(object$objects)) {
cols <- (strt):(strt + new_cols[i] - 1)
orig_var <- attr(object$objects[[i]], "var")
ns_values[, cols] <-
predict(object$objects[[i]], getElement(new_data, i))
new_names <-
paste(orig_var, "ns", names0(new_cols[i], ""), sep = "_")
colnames(ns_values)[cols] <- new_names
strt <- max(cols) + 1
new_data[, orig_var] <- NULL
}
new_data <- bind_cols(new_data, as_tibble(ns_values))
if (!is_tibble(new_data))
new_data <- as_tibble(new_data)
new_data
}
print.step_ns <-
function(x, width = max(20, options()$width - 28), ...) {
cat("Natural Splines on ")
printer(names(x$objects), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_ns
#' @param x A `step_ns` object.
#' @export
tidy.step_ns <- function(x, ...) {
if (is_trained(x)) {
cols <- tibble(terms = names(x$objects))
} else {
cols <- sel2char(x$terms)
}
res <- expand.grid(terms = cols, stringsAsFactors = FALSE)
res$id <- x$id
as_tibble(res)
}
#' @rdname tunable.step
#' @export
tunable.step_ns <- function(x, ...) {
tibble::tibble(
name = c("deg_free"),
call_info = list(
list(pkg = "dials", fun = "spline_degree", range = c(1L, 15L))
),
source = "recipe",
component = "step_ns",
component_id = x$id
)
}
|