File: poly.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (204 lines) | stat: -rw-r--r-- 5,690 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#' Orthogonal Polynomial Basis Functions
#'
#' `step_poly` creates a *specification* of a recipe
#'  step that will create new columns that are basis expansions of
#'  variables using orthogonal polynomials.

#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#'  variables are affected by the step. See [selections()]
#'  for more details.  For the `tidy` method, these are not
#'  currently used.
#' @param role For model terms created by this step, what analysis
#'  role should they be assigned?. By default, the function assumes
#'  that the new columns created from the original variables will be
#'  used as predictors in a model.
#' @param objects A list of [stats::poly()] objects
#'  created once the step has been trained.
#' @param degree The polynomial degree (an integer).
#' @param options A list of options for [stats::poly()]
#'  which should not include `x`, `degree`, or `simple`. Note that
#'  the option `raw = TRUE` will produce the regular polynomial
#'  values (not orthogonalized).
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  columns that will be affected) and `degree`.
#' @keywords datagen
#' @concept preprocessing
#' @concept basis_expansion
#' @export
#' @details `step_poly` can new features from a single
#'  variable that enable fitting routines to model this variable in
#'  a nonlinear manner. The extent of the possible nonlinearity is
#'  determined by the `degree` argument of
#'  [stats::poly()]. The original variables are removed
#'  from the data and new columns are added. The naming convention
#'  for the new variables is `varname_poly_1` and so on.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'               data = biomass_tr)
#'
#' quadratic <- rec %>%
#'   step_poly(carbon, hydrogen)
#' quadratic <- prep(quadratic, training = biomass_tr)
#'
#' expanded <- bake(quadratic, biomass_te)
#' expanded
#'
#' tidy(quadratic, number = 1)
#' @seealso [step_ns()] [recipe()]
#'   [prep.recipe()] [bake.recipe()]


step_poly <-
  function(recipe,
           ...,
           role = "predictor",
           trained = FALSE,
           objects = NULL,
           degree = 2,
           options = list(),
        skip = FALSE,
        id = rand_id("poly")) {

    if (!is_tune(degree) & !is_varying(degree)) {
      degree <- as.integer(degree)
    }

    if (any(names(options) == "degree")) {
      degree <- options$degree
      message(
        paste(
          "The `degree` argument is now a main argument instead of being",
          "within `options`."
        )
      )
    }

    add_step(
      recipe,
      step_poly_new(
        terms = ellipse_check(...),
        trained = trained,
        role = role,
        objects = objects,
        degree = degree,
        options = options,
        skip = skip,
        id = id
      )
    )
  }

step_poly_new <-
  function(terms, role, trained, objects, degree, options, skip, id) {
    step(
      subclass = "poly",
      terms = terms,
      role = role,
      trained = trained,
      objects = objects,
      degree = degree,
      options = options,
      skip = skip,
      id = id
    )
  }


poly_wrapper <- function(x, args) {
  args$x <- x
  args$simple <- FALSE
  poly_obj <- do.call("poly", args)

  ## don't need to save the original data so keep 1 row
  out <- matrix(NA, ncol = ncol(poly_obj), nrow = 1)
  class(out) <- c("poly", "basis", "matrix")
  attr(out, "degree") <- attr(poly_obj, "degree")
  attr(out, "coefs") <- attr(poly_obj, "coefs")
  out
}


#' @export
prep.step_poly <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)

  check_type(training[, col_names])

  opts <- x$options
  opts$degree <- x$degree
  obj <- lapply(training[, col_names], poly_wrapper, opts)
  for (i in seq(along.with = col_names)) {
    attr(obj[[i]], "var") <- col_names[i]
  }

  step_poly_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    objects = obj,
    degree = x$degree,
    options = x$options,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_poly <- function(object, new_data, ...) {
  col_names <- names(object$objects)
  new_names <- purrr::map(object$objects, ~ paste(attr(.x, "var"), "poly", 1:ncol(.x), sep = "_"))
  poly_values <-
    purrr::map2(new_data[, col_names], object$objects, ~ predict(.y, .x)) %>%
    purrr::map(as_tibble) %>%
    purrr::map2_dfc(new_names, ~ setNames(.x, .y))
  new_data <- dplyr::bind_cols(new_data, poly_values)
  new_data <- dplyr::select(new_data, -col_names)
  new_data
}


print.step_poly <-
  function(x, width = max(20, options()$width - 35), ...) {
    cat("Orthogonal polynomials on ")
    printer(names(x$objects), x$terms, x$trained, width = width)
    invisible(x)
  }

#' @rdname step_poly
#' @param x A `step_poly` object.
#' @export
tidy.step_poly <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = names(x$objects), degree = x$degree)
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, degree = x$degree)
  }
  res$id <- x$id
  res
}


#' @rdname tunable.step
#' @export
tunable.step_poly <- function(x, ...) {
  tibble::tibble(
    name = c("degree"),
    call_info = list(
      list(pkg = "dials", fun = "degree_int")
    ),
    source = "recipe",
    component = "step_poly",
    component_id = x$id
  )
}