1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#' Ratio Variable Creation
#'
#' `step_ratio` creates a *specification* of a recipe
#' step that will create one or more ratios out of numeric
#' variables.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#' variables will be used in the *numerator* of the ratio.
#' When used with `denom_vars`, the dots indicate which
#' variables are used in the *denominator*. See
#' [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role For terms created by this step, what analysis role
#' should they be assigned?. By default, the function assumes that
#' the newly created ratios created by the original variables will
#' be used as predictors in a model.
#' @param denom A call to `denom_vars` to specify which
#' variables are used in the denominator that can include specific
#' variable names separated by commas or different selectors (see
#' [selections()]). If a column is included in both lists
#' to be numerator and denominator, it will be removed from the
#' listing.
#' @param naming A function that defines the naming convention for
#' new ratio columns.
#' @param columns The column names used in the ratios. This
#' argument is not populated until [prep.recipe()] is
#' executed.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected) and `denom`.
#' @keywords datagen
#' @concept preprocessing
#' @export
#' @examples
#' library(recipes)
#' library(modeldata)
#' data(biomass)
#'
#' biomass$total <- apply(biomass[, 3:7], 1, sum)
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen +
#' sulfur + total,
#' data = biomass_tr)
#'
#' ratio_recipe <- rec %>%
#' # all predictors over total
#' step_ratio(all_predictors(), denom = denom_vars(total)) %>%
#' # get rid of the original predictors
#' step_rm(all_predictors(), -ends_with("total"))
#'
#' ratio_recipe <- prep(ratio_recipe, training = biomass_tr)
#'
#' ratio_data <- bake(ratio_recipe, biomass_te)
#' ratio_data
step_ratio <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
denom = denom_vars(),
naming = function(numer, denom)
make.names(paste(numer, denom, sep = "_o_")),
columns = NULL,
skip = FALSE,
id = rand_id("ratio")) {
if (is_empty(denom))
rlang::abort(
paste0(
"Please supply at least one denominator variable specification. ",
"See ?selections."
)
)
add_step(
recipe,
step_ratio_new(
terms = ellipse_check(...),
role = role,
trained = trained,
denom = denom,
naming = naming,
columns = columns,
skip = skip,
id = id
)
)
}
step_ratio_new <-
function(terms, role, trained, denom, naming, columns, skip, id) {
step(
subclass = "ratio",
terms = terms,
role = role,
trained = trained,
denom = denom,
naming = naming,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_ratio <- function(x, training, info = NULL, ...) {
col_names <- expand.grid(
top = eval_select_recipes(x$terms, training, info),
bottom = eval_select_recipes(x$denom, training, info),
stringsAsFactors = FALSE
)
col_names <- col_names[!(col_names$top == col_names$bottom), ]
if (nrow(col_names) == 0)
rlang::abort("No variables were selected for making ratios")
if (any(info$type[info$variable %in% col_names$top] != "numeric"))
rlang::abort("The ratio variables should be numeric")
if (any(info$type[info$variable %in% col_names$bottom] != "numeric"))
rlang::abort("The ratio variables should be numeric")
step_ratio_new(
terms = x$terms,
role = x$role,
trained = TRUE,
denom = x$denom,
naming = x$naming,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_ratio <- function(object, new_data, ...) {
res <- new_data[, object$columns$top] /
new_data[, object$columns$bottom]
colnames(res) <-
apply(object$columns, 1, function(x)
object$naming(x[1], x[2]))
if (!is_tibble(res))
res <- as_tibble(res)
new_data <- bind_cols(new_data, res)
if (!is_tibble(new_data))
new_data <- as_tibble(new_data)
new_data
}
print.step_ratio <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Ratios from ")
if (x$trained) {
vars <- c(unique(x$columns$top), unique(x$columns$bottom))
cat(format_ch_vec(vars, width = width))
} else
cat(format_selectors(c(x$terms, x$denom), width = width))
if (x$trained)
cat(" [trained]\n")
else
cat("\n")
invisible(x)
}
#' @export
#' @rdname step_ratio
denom_vars <- function(...) quos(...)
#' @rdname step_ratio
#' @param x A `step_ratio` object
#' @export
tidy.step_ratio <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = x$columns$top,
denom = x$columns$bottom)
} else {
res <- tidyr::crossing(terms = sel2char(x$terms),
denom = sel2char(x$denom))
res <- as_tibble(res)
}
res$id <- x$id
arrange(res, terms, denom)
}
|