1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
#' Create Dummy Variables using Regular Expressions
#'
#' `step_regex` creates a *specification* of a recipe step that will
#' create a new dummy variable based on a regular expression.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... A single selector functions to choose which variable
#' will be searched for the pattern. The selector should resolve
#' into a single variable. See [selections()] for more
#' details. For the `tidy` method, these are not currently
#' used.
#' @param role For a variable created by this step, what analysis
#' role should they be assigned?. By default, the function assumes
#' that the new dummy variable column created by the original
#' variable will be used as a predictor in a model.
#' @param pattern A character string containing a regular
#' expression (or character string for `fixed = TRUE`) to be
#' matched in the given character vector. Coerced by
#' `as.character` to a character string if possible.
#' @param options A list of options to [grepl()] that
#' should not include `x` or `pattern`.
#' @param result A single character value for the name of the new
#' variable. It should be a valid column name.
#' @param input A single character value for the name of the
#' variable being searched. This is `NULL` until computed by
#' [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected) and `result` (the
#' new column name).
#' @keywords datagen
#' @concept preprocessing
#' @concept dummy_variables
#' @concept regular_expressions
#' @export
#' @examples
#' library(modeldata)
#' data(covers)
#'
#' rec <- recipe(~ description, covers) %>%
#' step_regex(description, pattern = "(rock|stony)", result = "rocks") %>%
#' step_regex(description, pattern = "ratake families")
#'
#' rec2 <- prep(rec, training = covers)
#' rec2
#'
#' with_dummies <- bake(rec2, new_data = covers)
#' with_dummies
#' tidy(rec, number = 1)
#' tidy(rec2, number = 1)
step_regex <- function(recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
options = list(),
result = make.names(pattern),
input = NULL,
skip = FALSE,
id = rand_id("regex")) {
if (!is_tune(pattern) & !is_varying(pattern)) {
if (!is.character(pattern)) {
rlang::abort("`pattern` should be a character string")
}
if (length(pattern) != 1) {
rlang::abort("`pattern` should be a single pattern")
}
}
valid_args <- names(formals(grepl))[-(1:2)]
if (any(!(names(options) %in% valid_args))) {
rlang::abort(paste0("Valid options are: ",
paste0(valid_args, collapse = ", ")))
}
terms <- ellipse_check(...)
if (length(terms) > 1)
rlang::abort("For this step, only a single selector can be used.")
add_step(
recipe,
step_regex_new(
terms = terms,
role = role,
trained = trained,
pattern = pattern,
options = options,
result = result,
input = input,
skip = skip,
id = id
)
)
}
step_regex_new <-
function(terms, role, trained, pattern, options, result, input, skip, id) {
step(
subclass = "regex",
terms = terms,
role = role,
trained = trained,
pattern = pattern,
options = options,
result = result,
input = input,
skip = skip,
id = id
)
}
#' @export
prep.step_regex <- function(x, training, info = NULL, ...) {
col_name <- eval_select_recipes(x$terms, training, info)
if (length(col_name) != 1)
rlang::abort("The selector should only select a single variable")
if (any(info$type[info$variable %in% col_name] != "nominal"))
rlang::abort("The regular expression input should be character or factor")
step_regex_new(
terms = x$terms,
role = x$role,
trained = TRUE,
pattern = x$pattern,
options = x$options,
input = col_name,
result = x$result,
skip = x$skip,
id = x$id
)
}
bake.step_regex <- function(object, new_data, ...) {
## sub in options
regex <- expr(
grepl(
x = getElement(new_data, object$input),
pattern = object$pattern,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE
)
)
if (length(object$options) > 0)
regex <- mod_call_args(regex, args = object$options)
new_data[, object$result] <- ifelse(eval(regex), 1, 0)
new_data
}
print.step_regex <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Regular expression dummy variable using `",
x$pattern,
"`",
sep = "")
if (x$trained)
cat(" [trained]\n")
else
cat("\n")
invisible(x)
}
#' @rdname step_regex
#' @param x A `step_regex` object.
#' @export
tidy.step_regex <- function(x, ...) {
term_names <- sel2char(x$terms)
p <- length(term_names)
if (is_trained(x)) {
res <- tibble(terms = term_names,
result = rep(x$result, p))
} else {
res <- tibble(terms = term_names,
result = rep(na_chr, p))
}
res$id <- x$id
res
}
|