1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#' Relevel factors to a desired level
#'
#' `step_relevel` creates a *specification* of a recipe
#' step that will reorder the provided factor columns so that
#' the level specified by ref_level is first. This is useful
#' for contr.treatment contrasts which take the first level as the
#' reference.
#'
#' @inheritParams step_center
#' @inherit step_center return
#'
#' @param ... One or more selector functions to choose which
#' variables that will be affected by the step. These variables
#' should be character or factor types. See [selections()] for more
#' details.
#' @param role Not used by this step since no new variables are
#' created.
#' @param ref_level A single character value that will be used to
#' relevel the factor column(s) (if the level is present).
#' @param objects A list of objects that contain the information
#' on factor levels that will be determined by [prep.recipe()].
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any).
#'
#' @keywords datagen
#' @concept preprocessing
#' @concept factors
#' @export
#' @details The selected variables are releveled to a level
#' (given by `ref_level`). Placing the `ref_level` in the first
#' position.
#'
#' Note that if the original columns are character, they will be
#' converted to factors by this step.
#'
#'
#' @examples
#'
#' library(modeldata)
#' data(okc)
#' rec <- recipe(~ diet + location, data = okc) %>%
#' step_unknown(diet, new_level = "UNKNOWN") %>%
#' step_relevel(diet, ref_level = "UNKNOWN") %>%
#' prep()
#'
#' data <- bake(rec, okc)
#' levels(data$diet)
step_relevel <-
function(recipe,
...,
role = NA,
trained = FALSE,
ref_level,
objects = NULL,
skip = FALSE,
id = rand_id("relevel")) {
add_step(
recipe,
step_relevel_new(
terms = ellipse_check(...),
role = role,
trained = trained,
ref_level = ref_level,
objects = objects,
skip = skip,
id = id
)
)
}
step_relevel_new <-
function(terms, role, trained, ref_level, objects, skip, id) {
step(
subclass = "relevel",
terms = terms,
role = role,
trained = trained,
ref_level = ref_level,
objects = objects,
skip = skip,
id = id
)
}
#' @export
prep.step_relevel <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
col_check <- dplyr::filter(info, .data$variable %in% col_names)
if (any(col_check$type != "nominal")) {
rlang::abort(
"Columns must be character or factor: ",
paste0(col_check$variable[col_check$type != "nominal"],
collapse = ", "
)
)
}
# Get existing levels and their factor type (i.e. ordered)
objects <- lapply(training[, col_names], get_existing_values)
# Check to make sure that no ordered levels are provided
order_check <- map_lgl(objects, attr, "is_ordered")
if (any(order_check)) {
rlang::abort(
"Columns contain ordered factors (which cannot be releveled) '",
x$ref_level, "': ",
paste0(names(order_check)[order_check], collapse = ", ")
)
}
# Check to make sure that the reference level exists in the factor
ref_check <- map_lgl(objects, function(x, y) !y %in% x,
y = x$ref_level
)
if (any(ref_check)) {
rlang::abort(
"Columns must contain the reference level '",
x$ref_level, "': ",
paste0(names(ref_check)[ref_check], collapse = ", ")
)
}
step_relevel_new(
terms = x$terms,
role = x$role,
trained = TRUE,
ref_level = x$ref_level,
objects = objects,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_relevel <- function(object, new_data, ...) {
for (i in names(object$objects)) {
new_data[[i]] <- stats::relevel(as.factor(new_data[[i]]), ref = object$ref_level)
}
if (!is_tibble(new_data)) {
new_data <- as_tibble(new_data)
}
new_data
}
print.step_relevel <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Re-order factor level to ref_level for ", sep = "")
printer(names(x$objects), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_relevel
#' @param x A `step_relevel` object.
#' @export
tidy.step_relevel <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$objects),
value = x$ref_level
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = x$ref_level
)
}
res$id <- x$id
res
}
|