1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
#' Apply (Smoothed) Rectified Linear Transformation
#'
#' `step_relu` creates a *specification* of a recipe step that
#' will apply the rectified linear or softplus transformations to numeric
#' data. The transformed data is added as new columns to the data matrix.
#'
#' @inheritParams step_center
#' @param recipe A recipe object. The step will be added to the sequence of
#' operations for this recipe.
#' @param ... One or more selector functions to choose which variables are
#' affected by the step. See [selections()] for more details.
#' @param role Defaults to "predictor".
#' @param trained A logical to indicate if the quantities for preprocessing
#' have been estimated.
#' @param shift A numeric value dictating a translation to apply to the data.
#' @param reverse A logical to indicate if the left hinge should be used as
#' opposed to the right hinge.
#' @param smooth A logical indicating if the softplus function, a smooth
#' approximation to the rectified linear transformation, should be used.
#' @param prefix A prefix for generated column names, default to "right_relu_"
#' when right hinge transformation and "left_relu_" for reversed/left hinge
#' transformations.
#' @param columns A character string of variable names that will
#' be populated (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the
#' new step added to the sequence of existing steps (if any).
#' @export
#' @rdname step_relu
#'
#' @details The rectified linear transformation is calculated as
#' \deqn{max(0, x - c)} and is also known as the ReLu or right hinge function.
#' If `reverse` is true, then the transformation is reflected about the
#' y-axis, like so: \deqn{max(0, c - x)} Setting the `smooth` option
#' to true will instead calculate a smooth approximation to ReLu
#' according to \deqn{ln(1 + e^(x - c)} The `reverse` argument may
#' also be applied to this transformation.
#'
#' @section Connection to MARS:
#'
#' The rectified linear transformation is used in Multivariate Adaptive
#' Regression Splines as a basis function to fit piecewise linear functions to
#' data in a strategy similar to that employed in tree based models. The
#' transformation is a popular choice as an activation function in many
#' neural networks, which could then be seen as a stacked generalization of
#' MARS when making use of ReLu activations. The hinge function also appears
#' in the loss function of Support Vector Machines, where it penalizes
#' residuals only if they are within a certain margin of the decision boundary.
#'
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' transformed_te <- rec %>%
#' step_relu(carbon, shift = 40) %>%
#' prep(biomass_tr) %>%
#' bake(biomass_te)
#'
#' transformed_te
#'
#' @seealso [recipe()] [prep.recipe()]
#' [bake.recipe()]
step_relu <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
shift = 0,
reverse = FALSE,
smooth = FALSE,
prefix = "right_relu_",
columns = NULL,
skip = FALSE,
id = rand_id("relu")) {
if (!is_tune(shift) & !is_varying(shift)) {
if (!is.numeric(shift)) {
rlang::abort("Shift argument must be a numeric value.")
}
}
if (!is_tune(reverse) & !is_varying(reverse)) {
if (!is.logical(reverse)) {
rlang::abort("Reverse argument must be a logical value.")
}
}
if (!is_tune(smooth) & !is_varying(smooth)) {
if (!is.logical(smooth)) {
rlang::abort("Smooth argument must be logical value.")
}
}
if (reverse & prefix == "right_relu_") {
prefix <- "left_relu_"
}
add_step(
recipe,
step_relu_new(
terms = ellipse_check(...),
role = role,
trained = trained,
shift = shift,
reverse = reverse,
smooth = smooth,
prefix = prefix,
columns = columns,
skip = skip,
id = id
)
)
}
step_relu_new <-
function(terms, role, trained, shift, reverse, smooth, prefix, columns, skip, id) {
step(
subclass = "relu",
terms = terms,
role = role,
trained = trained,
shift = shift,
reverse = reverse,
smooth = smooth,
prefix = prefix,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_relu <- function(x, training, info = NULL, ...) {
columns <- eval_select_recipes(x$terms, training, info)
check_type(training[, columns])
step_relu_new(
terms = x$terms,
role = x$role,
trained = TRUE,
shift = x$shift,
reverse = x$reverse,
smooth = x$smooth,
prefix = x$prefix,
columns = columns,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_relu <- function(object, new_data, ...) {
make_relu_call <- function(col) {
call2("relu", sym(col), object$shift, object$reverse, object$smooth)
}
exprs <- purrr::map(object$columns, make_relu_call)
newname <- paste0(object$prefix, object$columns)
exprs <- check_name(exprs, new_data, object, newname, TRUE)
dplyr::mutate(new_data, !!!exprs)
}
print.step_relu <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Adding relu transform for ", sep = "")
cat(format_selectors(x$terms, width = width))
if (x$trained)
cat(" [trained]\n")
else
cat("\n")
invisible(x)
}
relu <- function(x, shift = 0, reverse = FALSE, smooth = FALSE) {
if (!is.numeric(x))
rlang::abort("step_relu can only be applied to numeric data.")
if (reverse) {
shifted <- shift - x
} else {
shifted <- x - shift
}
if (smooth) {
out <- log1p(exp(shifted)) # use log1p for numerical accuracy
} else {
out <- pmax(shifted, rep(0, length(shifted)))
}
out
}
#' @rdname step_relu
#' @param x A `step_relu` object.
#' @export
tidy.step_relu <- function(x, ...) {
out <- simple_terms(x, ...)
out$shift <- x$shift
out$reverse <- x$reverse
out$id <- x$id
out
}
|