1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#' Impute Numeric Data Using a Rolling Window Statistic
#'
#' `step_rollimpute` creates a *specification* of a
#' recipe step that will substitute missing values of numeric
#' variables by the measure of location (e.g. median) within a moving window.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()] for more
#' details. These columns should be non-integer numerics (i.e.,
#' double precision). For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param columns A named numeric vector of columns. This is
#' `NULL` until computed by [prep.recipe()].
#' @param window The size of the window around a point to be imputed. Should be
#' an odd integer greater than one. See Details below for a discussion of
#' points at the ends of the series.
#' @param statistic A function with a single argument for the data to compute
#' the imputed value. Only complete values will be passed to the function and
#' it should return a double precision value.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected) and `window` (the window size).
#' @keywords datagen
#' @concept preprocessing
#' @concept imputation
#' @export
#' @details On the tails, the window is shifted towards the ends.
#' For example, for a 5-point window, the windows for the first
#' four points are `1:5`, `1:5`, `1:5`, and then `2:6`.
#'
#' When missing data are in the window, they are not passed to the
#' function. If all of the data in the window are missing, a
#' missing value is returned.
#'
#' The statistics are calculated on the training set values
#' _before_ imputation. This means that if previous data within the
#' window are missing, their imputed values are not included in the
#' window data used for imputation. In other words, each imputation
#' does not know anything about previous imputations in the series
#' prior to the current point.
#'
#' @examples
#' library(lubridate)
#'
#' set.seed(145)
#' example_data <-
#' data.frame(
#' day = ymd("2012-06-07") + days(1:12),
#' x1 = round(runif(12), 2),
#' x2 = round(runif(12), 2),
#' x3 = round(runif(12), 2)
#' )
#' example_data$x1[c(1, 5, 6)] <- NA
#' example_data$x2[c(1:4, 10)] <- NA
#'
#' library(recipes)
#' seven_pt <- recipe(~ . , data = example_data) %>%
#' update_role(day, new_role = "time_index") %>%
#' step_rollimpute(all_predictors(), window = 7) %>%
#' prep(training = example_data)
#'
#' # The training set:
#' bake(seven_pt, new_data = NULL)
step_rollimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("rollimpute")) {
if (!is_tune(window) & !is_varying(window)) {
if (window < 3 | window %% 2 != 1) {
rlang::abort("`window` should be an odd integer >= 3")
}
window <- as.integer(floor(window))
}
add_step(
recipe,
step_rollimpute_new(
terms = ellipse_check(...),
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
)
}
step_rollimpute_new <-
function(terms, role, trained, columns, statistic, window, skip, id) {
step(
subclass = "rollimpute",
terms = terms,
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
}
#' @export
prep.step_rollimpute <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
dbl_check <- vapply(training[, col_names], is.double, logical(1))
if (any(!dbl_check))
rlang::abort("All columns must be double precision for rolling imputation")
step_rollimpute_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
statistic = x$statistic,
window = x$window,
skip = x$skip,
id = x$id
)
}
get_window_ind <- function(i, n, k) {
sides <- (k - 1) / 2
if (i - sides >= 1 & i + sides <= n)
return((i - sides):(i + sides))
if (i - sides < 1)
return(1:k)
if (i + sides > n)
return((n - k + 1):n)
}
get_rolling_ind <- function(inds, n, k)
map(inds, get_window_ind, n = n, k = k)
window_est <- function(inds, x, statfun) {
x <- x[inds]
x <- x[!is.na(x)]
out <- if(length(x) == 0)
na_dbl
else
statfun(x)
if(!is.double(out))
out <- as.double(out)
out
}
impute_rolling <- function(inds, x, statfun) {
map_dbl(inds, window_est, x = x, statfun = statfun)
}
#' @export
bake.step_rollimpute <- function(object, new_data, ...) {
n <- nrow(new_data)
missing_ind <- lapply(new_data[, object$columns],
function(x) which(is.na(x)))
has_missing <- map_lgl(missing_ind, function(x) length(x) > 0)
missing_ind <- missing_ind[has_missing]
roll_ind <- lapply(missing_ind, get_rolling_ind, n = n, k = object$window)
for(i in seq(along.with = roll_ind)) {
imp_var <- names(roll_ind)[i]
estimates <-
impute_rolling(roll_ind[[i]], new_data[[imp_var]], object$statistic)
new_data[missing_ind[[i]], imp_var] <- estimates
}
as_tibble(new_data)
}
print.step_rollimpute <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Rolling Imputation for ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_rollimpute
#' @param x A `step_rollimpute` object.
#' @export
tidy.step_rollimpute <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = x$columns, window = x$window)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, window = x$window)
}
res$id <- x$id
res
}
#' @rdname tunable.step
#' @export
tunable.step_rollimpute <- function(x, ...) {
tibble::tibble(
name = c("statistic", "window"),
call_info = list(
list(pkg = "dials", fun = "location_stat"),
list(pkg = "dials", fun = "window")
),
source = "recipe",
component = "step_rollimpute",
component_id = x$id
)
}
|