1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
#' Sample rows using dplyr
#'
#' `step_sample` creates a *specification* of a recipe step
#' that will sample rows using [dplyr::sample_n()] or
#' [dplyr::sample_frac()].
#'
#' @template row-ops
#' @inheritParams step_center
#' @param ... Argument ignored; included for consistency with other step
#' specification functions. For the `tidy`
#' method, these are not currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param size An integer or fraction. If the value is within (0, 1),
#' [dplyr::sample_frac()] is applied to the data. If an integer
#' value of 1 or greater is used, [dplyr::sample_n()] is applied.
#' The default of `NULL` uses [dplyr::sample_n()] with the size
#' of the training set (or smaller for smaller `new_data`).
#' @param skip A logical. Should the step be skipped when the
#' recipe is baked by [bake.recipe()]? While all operations are baked
#' when [prep.recipe()] is run, some operations may not be able to be
#' conducted on new data (e.g. processing the outcome variable(s)).
#' Care should be taken when using `skip = FALSE`.
#' @param replace Sample with or without replacement?
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `size`, `replace`,
#' and `id`.
#' @keywords datagen
#' @concept preprocessing
#' @export
#' @examples
#'
#' # Uses `sample_n`
#' recipe( ~ ., data = mtcars) %>%
#' step_sample(size = 1) %>%
#' prep(training = mtcars) %>%
#' bake(new_data = NULL) %>%
#' nrow()
#'
#' # Uses `sample_frac`
#' recipe( ~ ., data = mtcars) %>%
#' step_sample(size = 0.9999) %>%
#' prep(training = mtcars) %>%
#' bake(new_data = NULL) %>%
#' nrow()
#'
#' # Uses `sample_n` and returns _at maximum_ 20 samples.
#' smaller_cars <-
#' recipe( ~ ., data = mtcars) %>%
#' step_sample() %>%
#' prep(training = mtcars %>% slice(1:20))
#'
#' bake(smaller_cars, new_data = NULL) %>% nrow()
#' bake(smaller_cars, new_data = mtcars %>% slice(21:32)) %>% nrow()
#' @seealso [step_filter()] [step_naomit()] [step_slice()]
step_sample <- function(
recipe, ...,
role = NA,
trained = FALSE,
size = NULL,
replace = FALSE,
skip = TRUE,
id = rand_id("sample")
) {
if (length(list(...)) > 0) {
rlang::warn("Selectors are not used for this step.")
}
if (!is_tune(size) & !is_varying(size)) {
if (!is.null(size) & (!is.numeric(size) || size < 0)) {
rlang::abort("`size` should be a positive number or NULL.")
}
}
if (!is_tune(replace) & !is_varying(replace)) {
if (!is.logical(replace)) {
rlang::abort("`replace` should be a single logical.")
}
}
add_step(
recipe,
step_sample_new(
terms = terms,
trained = trained,
role = role,
size = size,
replace = replace,
skip = skip,
id = id
)
)
}
step_sample_new <-
function(terms, role, trained, size, replace, skip, id) {
step(
subclass = "sample",
terms = terms,
role = role,
trained = trained,
size = size,
replace = replace,
skip = skip,
id = id
)
}
#' @export
prep.step_sample <- function(x, training, info = NULL, ...) {
if (is.null(x$size)) {
x$size <- nrow(training)
}
step_sample_new(
terms = x$terms,
trained = TRUE,
role = x$role,
size = x$size,
replace = x$replace,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_sample <- function(object, new_data, ...) {
if (object$size >= 1) {
n <- min(object$size, nrow(new_data))
new_data <-
dplyr::sample_n(new_data, size = floor(n), replace = object$replace)
} else {
new_data <-
dplyr::sample_frac(new_data, size = object$size, replace = object$replace)
}
new_data
}
print.step_sample <-
function(x, width = max(20, options()$width - 35), ...) {
cat("Row sampling")
if (x$replace)
cat(" with replacement")
if (x$trained) {
cat(" [trained]\n")
} else {
cat("\n")
}
invisible(x)
}
#' @rdname step_sample
#' @param x A `step_sample` object
#' @export
tidy.step_sample <- function(x, ...) {
tibble(
size = x$size,
replace = x$replace,
id = x$inputs
)
}
|