File: scale.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (160 lines) | stat: -rw-r--r-- 4,637 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#' Scaling Numeric Data
#'
#' `step_scale` creates a *specification* of a recipe
#'  step that will normalize numeric data to have a standard
#'  deviation of one.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#'  variables are affected by the step. See [selections()]
#'  for more details. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this step since no new variables are
#'  created.
#' @param sds A named numeric vector of standard deviations. This
#'  is `NULL` until computed by [prep.recipe()].
#' @param factor A numeric value of either 1 or 2 that scales the
#'  numeric inputs by one or two standard deviations. By dividing
#'  by two standard deviations, the coefficients attached to
#'  continuous predictors can be interpreted the same way as with
#'  binary inputs. Defaults to `1`. More in reference below.
#' @param na_rm A logical value indicating whether `NA`
#'  values should be removed when computing the standard deviation.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  selectors or variables selected) and `value` (the
#'  standard deviations).
#' @keywords datagen
#' @concept preprocessing
#' @concept normalization_methods
#' @export
#' @details Scaling data means that the standard deviation of a
#'  variable is divided out of the data. `step_scale` estimates
#'  the variable standard deviations from the data used in the
#'  `training` argument of `prep.recipe`.
#'  `bake.recipe` then applies the scaling to new data sets
#'  using these standard deviations.
#' @references Gelman, A. (2007) "Scaling regression inputs by
#'  dividing by two standard deviations." Unpublished. Source:
#'  \url{http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf}.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'               data = biomass_tr)
#'
#' scaled_trans <- rec %>%
#'   step_scale(carbon, hydrogen)
#'
#' scaled_obj <- prep(scaled_trans, training = biomass_tr)
#'
#' transformed_te <- bake(scaled_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#' tidy(scaled_trans, number = 1)
#' tidy(scaled_obj, number = 1)
#'
step_scale <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           sds = NULL,
           factor = 1,
           na_rm = TRUE,
           skip = FALSE,
           id = rand_id("scale")) {
    add_step(
      recipe,
      step_scale_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        sds = sds,
        factor = factor,
        na_rm = na_rm,
        skip = skip,
        id = id
      )
    )
  }

step_scale_new <-
  function(terms, role, trained, sds, factor, na_rm, skip, id) {
    step(
      subclass = "scale",
      terms = terms,
      role = role,
      trained = trained,
      sds = sds,
      factor = factor,
      na_rm = na_rm,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_scale <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)
  check_type(training[, col_names])

  if (x$factor != 1 & x$factor != 2) {
    rlang::warn("Scaling `factor` should take either a value of 1 or 2")
  }

  sds <-
    vapply(training[, col_names], sd, c(sd = 0), na.rm = x$na_rm)

  sds <- sds * x$factor

  step_scale_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    sds,
    factor = x$factor,
    na_rm = x$na_rm,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_scale <- function(object, new_data, ...) {
  res <-
    sweep(as.matrix(new_data[, names(object$sds)]), 2, object$sds, "/")
  res <- tibble::as_tibble(res)
  new_data[, names(object$sds)] <- res
  as_tibble(new_data)
}

print.step_scale <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Scaling for ", sep = "")
    printer(names(x$sds), x$terms, x$trained, width = width)
    invisible(x)
  }


#' @rdname step_scale
#' @param x A `step_scale` object.
#' @export
tidy.step_scale <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = names(x$sds),
                  value = x$sds)
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names,
                  value = na_dbl)
  }
  res$id <- x$id
  res
}