1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#' Scaling Numeric Data
#'
#' `step_scale` creates a *specification* of a recipe
#' step that will normalize numeric data to have a standard
#' deviation of one.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#' variables are affected by the step. See [selections()]
#' for more details. For the `tidy` method, these are not
#' currently used.
#' @param role Not used by this step since no new variables are
#' created.
#' @param sds A named numeric vector of standard deviations. This
#' is `NULL` until computed by [prep.recipe()].
#' @param factor A numeric value of either 1 or 2 that scales the
#' numeric inputs by one or two standard deviations. By dividing
#' by two standard deviations, the coefficients attached to
#' continuous predictors can be interpreted the same way as with
#' binary inputs. Defaults to `1`. More in reference below.
#' @param na_rm A logical value indicating whether `NA`
#' values should be removed when computing the standard deviation.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` (the
#' selectors or variables selected) and `value` (the
#' standard deviations).
#' @keywords datagen
#' @concept preprocessing
#' @concept normalization_methods
#' @export
#' @details Scaling data means that the standard deviation of a
#' variable is divided out of the data. `step_scale` estimates
#' the variable standard deviations from the data used in the
#' `training` argument of `prep.recipe`.
#' `bake.recipe` then applies the scaling to new data sets
#' using these standard deviations.
#' @references Gelman, A. (2007) "Scaling regression inputs by
#' dividing by two standard deviations." Unpublished. Source:
#' \url{http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf}.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' scaled_trans <- rec %>%
#' step_scale(carbon, hydrogen)
#'
#' scaled_obj <- prep(scaled_trans, training = biomass_tr)
#'
#' transformed_te <- bake(scaled_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#' tidy(scaled_trans, number = 1)
#' tidy(scaled_obj, number = 1)
#'
step_scale <-
function(recipe,
...,
role = NA,
trained = FALSE,
sds = NULL,
factor = 1,
na_rm = TRUE,
skip = FALSE,
id = rand_id("scale")) {
add_step(
recipe,
step_scale_new(
terms = ellipse_check(...),
role = role,
trained = trained,
sds = sds,
factor = factor,
na_rm = na_rm,
skip = skip,
id = id
)
)
}
step_scale_new <-
function(terms, role, trained, sds, factor, na_rm, skip, id) {
step(
subclass = "scale",
terms = terms,
role = role,
trained = trained,
sds = sds,
factor = factor,
na_rm = na_rm,
skip = skip,
id = id
)
}
#' @export
prep.step_scale <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
if (x$factor != 1 & x$factor != 2) {
rlang::warn("Scaling `factor` should take either a value of 1 or 2")
}
sds <-
vapply(training[, col_names], sd, c(sd = 0), na.rm = x$na_rm)
sds <- sds * x$factor
step_scale_new(
terms = x$terms,
role = x$role,
trained = TRUE,
sds,
factor = x$factor,
na_rm = x$na_rm,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_scale <- function(object, new_data, ...) {
res <-
sweep(as.matrix(new_data[, names(object$sds)]), 2, object$sds, "/")
res <- tibble::as_tibble(res)
new_data[, names(object$sds)] <- res
as_tibble(new_data)
}
print.step_scale <-
function(x, width = max(20, options()$width - 30), ...) {
cat("Scaling for ", sep = "")
printer(names(x$sds), x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_scale
#' @param x A `step_scale` object.
#' @export
tidy.step_scale <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$sds),
value = x$sds)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names,
value = na_dbl)
}
res$id <- x$id
res
}
|