1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
#' @name selections
#' @aliases selections
#' @aliases selection
#'
#' @title Methods for Selecting Variables in Step Functions
#'
#' @description When selecting variables or model terms in `step`
#' functions, `dplyr`-like tools are used. The *selector* functions
#' can choose variables based on their name, current role, data
#' type, or any combination of these. The selectors are passed as
#' any other argument to the step. If the variables are explicitly
#' stated in the step function, this might be similar to:
#'
#' \preformatted{
#' recipe( ~ ., data = USArrests) \%>\%
#' step_pca(Murder, Assault, UrbanPop, Rape, num_comp = 3)
#' }
#'
#' The first four arguments indicate which variables should be
#' used in the PCA while the last argument is a specific argument
#' to [step_pca()].
#'
#' Note that:
#'
#' \enumerate{
#' \item These arguments are not evaluated until the `prep`
#' function for the step is executed.
#' \item The `dplyr`-like syntax allows for negative signs to
#' exclude variables (e.g. `-Murder`) and the set of selectors will
#' processed in order.
#' \item A leading exclusion in these arguments (e.g. `-Murder`)
#' has the effect of adding all variables to the list except the
#' excluded variable(s).
#' }
#'
#' Also, select helpers from the `tidyselect` package can also be used:
#' [tidyselect::starts_with()], [tidyselect::ends_with()],
#' [tidyselect::contains()], [tidyselect::matches()],
#' [tidyselect::num_range()], [tidyselect::everything()],
#' [tidyselect::one_of()], [tidyselect::all_of()], and
#' [tidyselect::any_of()]
#'
#' For example:
#'
#' \preformatted{
#' recipe(Species ~ ., data = iris) \%>\%
#' step_center(starts_with("Sepal"), -contains("Width"))
#' }
#'
#' would only select `Sepal.Length`
#'
#' Columns of the design matrix that may not exist when the step
#' is coded can also be selected. For example, when using
#' `step_pca()`, the number of columns created by feature extraction
#' may not be known when subsequent steps are defined. In this
#' case, using `matches("^PC")` will select all of the columns
#' whose names start with "PC" *once those columns are created*.
#'
#' There are sets of recipes specific functions that can be used to select
#' variables based on their role or type: [has_role()] and
#' [has_type()]. For convenience, there are also functions that are
#' more specific: [all_numeric()], [all_nominal()],
#' [all_predictors()], and [all_outcomes()]. These can be used in
#' conjunction with the previous functions described for selecting
#' variables using their names:
#'
#' \preformatted{
#' data(biomass)
#' recipe(HHV ~ ., data = biomass) \%>\%
#' step_center(all_numeric(), -all_outcomes())
#' }
#'
#' This results in all the numeric predictors: carbon, hydrogen,
#' oxygen, nitrogen, and sulfur.
#'
#' If a role for a variable has not been defined, it will never be
#' selected using role-specific selectors.
#'
#' Selectors can be used in [step_interact()] in similar ways but
#' must be embedded in a model formula (as opposed to a sequence
#' of selectors). For example, the interaction specification
#' could be `~ starts_with("Species"):Sepal.Width`. This can be
#' useful if `Species` was converted to dummy variables
#' previously using [step_dummy()]. The implementation of
#' `step_interact()` is special, and is more restricted than
#' the other step functions. Only the selector functions from
#' recipes and tidyselect are allowed. User defined selector functions
#' will not be recognized. Additionally, the tidyselect domain specific
#' language is not recognized here, meaning that `&`, `|`, `!`, and `-`
#' will not work.
NULL
eval_select_recipes <- function(quos, data, info) {
# Maintain ordering between `data` column names and `info$variable` so
# `eval_select()` and recipes selectors return compatible positions
data_info <- tibble(variable = names(data))
data_info <- dplyr::left_join(data_info, info, by = "variable")
nested_info <- nest_current_info(data_info)
local_current_info(nested_info)
expr <- expr(c(!!!quos))
# FIXME: Ideally this is `FALSE`, but empty selections incorrectly throw an
# error when this is false due to the following bug:
# https://github.com/r-lib/tidyselect/issues/221
allow_rename <- TRUE
sel <- tidyselect::eval_select(
expr = expr,
data = data,
allow_rename = allow_rename
)
# Return names not positions, as these names are
# used for both the training and test set and their positions
# may have changed. `sel` won't be named because when `allow_rename = FALSE`,
# `eval_select()` returns an unnamed vector.
out <- names(data)[sel]
# FIXME: Remove this check when the following issue is fixed,
# i.e. when we can use `allow_rename = FALSE`
# https://github.com/r-lib/tidyselect/issues/221
if (!identical(out, names(sel))) {
abort("Can't rename variables in this context.")
}
out
}
nest_current_info <- function(info) {
# See https://tidyr.tidyverse.org/dev/articles/in-packages.html
if (tidyr_new_interface()) {
tidyr::nest(info, data = -variable)
} else {
tidyr::nest(info, -variable)
}
}
#' Role Selection
#'
#' @description
#'
#' `has_role()`, `all_predictors()`, and `all_outcomes()` can be used to
#' select variables in a formula that have certain roles.
#' Similarly, `has_type()`, `all_numeric()`, and `all_nominal()` are used
#' to select columns based on their data type.
#'
#' See `?selections` for more details.
#'
#' `current_info()` is an internal function.
#'
#' All of these functions have have limited utility
#' outside of column selection in step functions.
#'
#' @param match A single character string for the query. Exact
#' matching is used (i.e. regular expressions won't work).
#'
#' @return
#'
#' Selector functions return an integer vector.
#'
#' `current_info()` returns an environment with objects `vars` and `data`.
#'
#' @keywords datagen
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' rec <- recipe(biomass) %>%
#' update_role(
#' carbon, hydrogen, oxygen, nitrogen, sulfur,
#' new_role = "predictor"
#' ) %>%
#' update_role(HHV, new_role = "outcome") %>%
#' update_role(sample, new_role = "id variable") %>%
#' update_role(dataset, new_role = "splitting indicator")
#'
#' recipe_info <- summary(rec)
#' recipe_info
#'
#' # Centering on all predictors except carbon
#' rec %>%
#' step_center(all_predictors(), -carbon) %>%
#' prep(training = biomass) %>%
#' bake(new_data = NULL)
#'
#' @export
has_role <- function(match = "predictor") {
roles <- peek_roles()
lgl_matches <- purrr::map_lgl(roles, ~any(.x %in% match))
which(lgl_matches)
}
#' @export
#' @rdname has_role
all_predictors <- function() {
has_role("predictor")
}
#' @export
#' @rdname has_role
all_outcomes <- function() {
has_role("outcome")
}
#' @export
#' @rdname has_role
has_type <- function(match = "numeric") {
types <- peek_types()
lgl_matches <- purrr::map_lgl(types, ~any(.x %in% match))
which(lgl_matches)
}
#' @export
#' @rdname has_role
all_numeric <- function() {
has_type("numeric")
}
#' @export
#' @rdname has_role
all_nominal <- function() {
has_type("nominal")
}
peek_roles <- function() {
peek_info("role")
}
peek_types <- function() {
peek_info("type")
}
peek_info <- function(col) {
.data <- current_info()$data
purrr::map(.data, ~.x[[col]])
}
## functions to get current variable info for selectors modeled after
## dplyr versions
#' @import rlang
cur_info_env <- env(empty_env())
local_current_info <- function(nested_info, frame = parent.frame()) {
local_bindings(
vars = nested_info$variable,
data = nested_info$data,
.env = cur_info_env,
.frame = frame
)
}
#' @export
#' @rdname has_role
current_info <- function() {
cur_info_env %||% rlang::abort("Variable context not set")
}
# ------------------------------------------------------------------------------
# Old method for selection. This has been completely superseded by
# `eval_select_recipes()`, and should no longer be used in recipes, but we
# have exported it so we continue to support it here.
# This flags formulas that are not allowed
element_check <- function(x) {
funs <- fun_calls(x)
funs <- funs[!(funs %in% c("~", "+", "-"))]
# i.e. tidyselect::matches()
funs <- funs[!(funs %in% c("::", "tidyselect", "dplyr", "recipes"))]
name_selectors <- c(
"starts_with",
"ends_with",
"contains",
"matches",
"num_range",
"everything",
"one_of",
"all_of",
"any_of",
"c"
)
role_selectors <- c(
"has_role",
"all_predictors",
"all_outcomes"
)
type_selectors <- c(
"has_type",
"all_numeric",
"all_nominal"
)
selectors <- c(
name_selectors,
role_selectors,
type_selectors
)
not_good <- funs[!(funs %in% selectors)]
if (length(not_good) > 0) {
rlang::abort(paste0(
"Not all functions are allowed in step function selectors (e.g. ",
paste0("`", not_good, "`", collapse = ", "),
"). See ?selections."
))
}
invisible(NULL)
}
#' Select Terms in a Step Function.
#'
#' This function bakes the step function selectors and might be
#' useful when creating custom steps.
#'
#' @param info A tibble with columns `variable`, `type`, `role`,
#' and `source` that represent the current state of the data. The
#' function [summary.recipe()] can be used to get this information
#' from a recipe.
#' @param terms A list of formulas whose right-hand side contains
#' quoted expressions. See [rlang::quos()] for examples.
#' @param empty_fun A function to execute when no terms are selected by the
#' step. The default function throws an error with a message.
#' @keywords datagen
#' @concept preprocessing
#' @return A character string of column names or an error of there
#' are no selectors or if no variables are selected.
#' @seealso [recipe()] [summary.recipe()]
#' [prep.recipe()]
#' @export
#' @examples
#' library(rlang)
#' library(modeldata)
#' data(okc)
#' rec <- recipe(~ ., data = okc)
#' info <- summary(rec)
#' terms_select(info = info, quos(all_predictors()))
terms_select <- function(terms, info, empty_fun = abort_selection) {
# unique in case a variable has multiple roles
vars <- unique(info$variable)
if (is_empty(terms)) {
rlang::abort("At least one selector should be used")
}
## check arguments against whitelist
lapply(terms, element_check)
# Set current_info so available to helpers
nested_info <- nest_current_info(info)
local_current_info(nested_info)
# `terms` might be a single call (like in step_interact()),
# or it could be a list of quosures.
# They have to be unquoted differently
if (is.call(terms)) {
sel <- with_handlers(
tidyselect::vars_select(vars, !! terms),
tidyselect_empty = empty_fun
)
} else {
sel <- with_handlers(
tidyselect::vars_select(vars, !!! terms),
tidyselect_empty = empty_fun
)
}
unname(sel)
}
abort_selection <- exiting(function(cnd) {
abort("No variables or terms were selected.")
})
|