File: spatialsign.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (144 lines) | stat: -rw-r--r-- 4,175 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#' Spatial Sign Preprocessing
#'
#' `step_spatialsign` is a *specification* of a recipe
#'  step that will convert numeric data into a projection on to a
#'  unit sphere.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#'  variables will be used for the normalization. See
#'  [selections()] for more details. For the `tidy`
#'  method, these are not currently used.
#' @param role For model terms created by this step, what analysis
#'  role should they be assigned?
#' @param na_rm A logical: should missing data be removed from the
#'  norm computation?
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` which
#'  is the columns that will be affected.
#' @keywords datagen
#' @concept preprocessing
#' @concept projection_methods
#' @export
#' @details The spatial sign transformation projects the variables
#'  onto a unit sphere and is related to global contrast
#'  normalization. The spatial sign of a vector `w` is
#'  `w/norm(w)`.
#'
#' The variables should be centered and scaled prior to the
#'  computations.
#'
#' @references Serneels, S., De Nolf, E., and Van Espen, P.
#'  (2006). Spatial sign preprocessing: a simple way to impart
#'  moderate robustness to multivariate estimators. *Journal of
#'  Chemical Information and Modeling*, 46(3), 1402-1409.

#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'               data = biomass_tr)
#'
#' ss_trans <- rec %>%
#'   step_center(carbon, hydrogen) %>%
#'   step_scale(carbon, hydrogen) %>%
#'   step_spatialsign(carbon, hydrogen)
#'
#' ss_obj <- prep(ss_trans, training = biomass_tr)
#'
#' transformed_te <- bake(ss_obj, biomass_te)
#'
#' plot(biomass_te$carbon, biomass_te$hydrogen)
#'
#' plot(transformed_te$carbon, transformed_te$hydrogen)
#'
#' tidy(ss_trans, number = 3)
#' tidy(ss_obj, number = 3)

step_spatialsign <-
  function(recipe,
           ...,
           role = "predictor",
           na_rm = TRUE,
           trained = FALSE,
           columns = NULL,
           skip = FALSE,
           id = rand_id("spatialsign")) {
    add_step(recipe,
             step_spatialsign_new(
               terms = ellipse_check(...),
               role = role,
               na_rm = na_rm,
               trained = trained,
               columns = columns,
               skip = skip,
               id = id
             ))
  }

step_spatialsign_new <-
  function(terms, role, na_rm, trained, columns, skip, id) {
    step(
      subclass = "spatialsign",
      terms = terms,
      role = role,
      na_rm = na_rm,
      trained = trained,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_spatialsign <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)

  check_type(training[, col_names])

  step_spatialsign_new(
    terms = x$terms,
    role = x$role,
    na_rm = x$na_rm,
    trained = TRUE,
    columns = col_names,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_spatialsign <- function(object, new_data, ...) {
  col_names <- object$columns
  ss <- function(x, na_rm) {
    x / sqrt(sum(x ^ 2, na.rm = na_rm))
  }
  res <- t(apply(as.matrix(new_data[, col_names]), 1, ss, na_rm = object$na_rm))
  res <- tibble::as_tibble(res)
  new_data[, col_names] <- res
  tibble::as_tibble(new_data)
}

print.step_spatialsign <-
  function(x, width = max(20, options()$width - 26), ...) {
    cat("Spatial sign on  ", sep = "")
    printer(x$columns, x$terms, x$trained, width = width)
    invisible(x)
  }

#' @rdname step_spatialsign
#' @param x A `step_spatialsign` object.
#' @export
tidy.step_spatialsign <- function(x, ...) {
  res <-simple_terms(x, ...)
  res$id <- x$id
  res
}