1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#' Spatial Sign Preprocessing
#'
#' `step_spatialsign` is a *specification* of a recipe
#' step that will convert numeric data into a projection on to a
#' unit sphere.
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#' variables will be used for the normalization. See
#' [selections()] for more details. For the `tidy`
#' method, these are not currently used.
#' @param role For model terms created by this step, what analysis
#' role should they be assigned?
#' @param na_rm A logical: should missing data be removed from the
#' norm computation?
#' @param columns A character string of variable names that will
#' be populated (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step
#' added to the sequence of existing steps (if any). For the
#' `tidy` method, a tibble with columns `terms` which
#' is the columns that will be affected.
#' @keywords datagen
#' @concept preprocessing
#' @concept projection_methods
#' @export
#' @details The spatial sign transformation projects the variables
#' onto a unit sphere and is related to global contrast
#' normalization. The spatial sign of a vector `w` is
#' `w/norm(w)`.
#'
#' The variables should be centered and scaled prior to the
#' computations.
#'
#' @references Serneels, S., De Nolf, E., and Van Espen, P.
#' (2006). Spatial sign preprocessing: a simple way to impart
#' moderate robustness to multivariate estimators. *Journal of
#' Chemical Information and Modeling*, 46(3), 1402-1409.
#' @examples
#' library(modeldata)
#' data(biomass)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training",]
#' biomass_te <- biomass[biomass$dataset == "Testing",]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr)
#'
#' ss_trans <- rec %>%
#' step_center(carbon, hydrogen) %>%
#' step_scale(carbon, hydrogen) %>%
#' step_spatialsign(carbon, hydrogen)
#'
#' ss_obj <- prep(ss_trans, training = biomass_tr)
#'
#' transformed_te <- bake(ss_obj, biomass_te)
#'
#' plot(biomass_te$carbon, biomass_te$hydrogen)
#'
#' plot(transformed_te$carbon, transformed_te$hydrogen)
#'
#' tidy(ss_trans, number = 3)
#' tidy(ss_obj, number = 3)
step_spatialsign <-
function(recipe,
...,
role = "predictor",
na_rm = TRUE,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("spatialsign")) {
add_step(recipe,
step_spatialsign_new(
terms = ellipse_check(...),
role = role,
na_rm = na_rm,
trained = trained,
columns = columns,
skip = skip,
id = id
))
}
step_spatialsign_new <-
function(terms, role, na_rm, trained, columns, skip, id) {
step(
subclass = "spatialsign",
terms = terms,
role = role,
na_rm = na_rm,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_spatialsign <- function(x, training, info = NULL, ...) {
col_names <- eval_select_recipes(x$terms, training, info)
check_type(training[, col_names])
step_spatialsign_new(
terms = x$terms,
role = x$role,
na_rm = x$na_rm,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_spatialsign <- function(object, new_data, ...) {
col_names <- object$columns
ss <- function(x, na_rm) {
x / sqrt(sum(x ^ 2, na.rm = na_rm))
}
res <- t(apply(as.matrix(new_data[, col_names]), 1, ss, na_rm = object$na_rm))
res <- tibble::as_tibble(res)
new_data[, col_names] <- res
tibble::as_tibble(new_data)
}
print.step_spatialsign <-
function(x, width = max(20, options()$width - 26), ...) {
cat("Spatial sign on ", sep = "")
printer(x$columns, x$terms, x$trained, width = width)
invisible(x)
}
#' @rdname step_spatialsign
#' @param x A `step_spatialsign` object.
#' @export
tidy.step_spatialsign <- function(x, ...) {
res <-simple_terms(x, ...)
res$id <- x$id
res
}
|