File: string2factor.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (194 lines) | stat: -rw-r--r-- 5,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#' Convert Strings to Factors
#'
#' `step_string2factor` will convert one or more character
#'  vectors to factors (ordered or unordered).
#'
#' @inheritParams step_center
#' @inherit step_center return
#' @param ... One or more selector functions to choose which
#'  variables will be converted to factors. See
#'  [selections()] for more details. For the `tidy`
#'  method, these are not currently used.

#' @param role Not used by this step since no new variables are
#'  created.
#' @param levels An options specification of the levels to be used
#'  for the new factor. If left `NULL`, the sorted unique
#'  values present when `bake` is called will be used.
#' @param ordered A single logical value; should the factor(s) be
#'  ordered?
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  selectors or variables selected) and `ordered`.
#' @keywords datagen
#' @concept preprocessing
#' @concept variable_encodings
#' @concept factors
#' @export
#' @details If `levels` is given, `step_string2factor` will
#'  convert all variables affected by this step to have the same
#'  levels.
#'
#'  Also, note that `prep` has an option `strings_as_factors` that
#'  defaults to `TRUE`. This should be changed so that raw character
#'  data will be applied to `step_string2factor`. However, this step
#'  can also take existing factors (but will leave them as-is).
#' @seealso [step_factor2string()] [step_dummy()] [step_other()]
#'  [step_novel()]
#' @examples
#' library(modeldata)
#' data(okc)
#'
#' rec <- recipe(~ diet + location, data = okc)
#'
#' make_factor <- rec %>%
#'   step_string2factor(diet)
#' make_factor <- prep(make_factor,
#'                     training = okc,
#'                     strings_as_factors = FALSE)
#'
#' # note that `diet` is a factor
#' bake(make_factor, new_data = NULL) %>% head
#' okc %>% head
#' tidy(make_factor, number = 1)

step_string2factor <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           levels = NULL,
           ordered = FALSE,
           skip = FALSE,
           id = rand_id("string2factor")) {
    if (!is_tune(ordered) & !is_varying(ordered)) {
      if (!is.logical(ordered) || length(ordered) != 1) {
        rlang::abort("`ordered` should be a single logical variable")
      }
    }
    if ((!is.null(levels) & !is.character(levels)) | is.list(levels)) {
      rlang::abort("`levels` should be NULL or a single character vector")
    }

    add_step(
      recipe,
      step_string2factor_new(
        terms = ellipse_check(...),
        role = role,
        trained = trained,
        levels = levels,
        ordered = ordered,
        skip = skip,
        id = id
      )
    )
  }

step_string2factor_new <-
  function(terms, role, trained, levels, ordered, skip, id) {
    step(
      subclass = "string2factor",
      terms = terms,
      role = role,
      trained = trained,
      levels = levels,
      ordered = ordered,
      skip = skip,
      id = id
    )
  }

get_ord_lvls <- function(x)
  sort(unique(x))

#' @export
prep.step_string2factor <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)
  str_check <-
    vapply(
      training[, col_names],
      function(x) is.character(x) | is.factor(x),
      logical(1)
    )
  if (any(!str_check))
    rlang::abort(
      paste0(
        "The following variables are not character vectors: ",
        paste0("`", names(str_check)[!str_check], "`", collapse = ", ")
      )
    )

  if (is.null(x$levels)) {
    res <- lapply(training[, col_names], get_ord_lvls)
  } else
    res <- x$levels

  ord <- rep(x$ordered, length(col_names))
  names(ord) <- col_names

  step_string2factor_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    levels = res,
    ordered = ord,
    skip = x$skip,
    id = x$id
  )
}

make_factor <- function(x, lvl, ord) {
  if (is.factor(x))
    return(x)
  factor(x, levels = lvl, ordered = ord)
}

#' @export
bake.step_string2factor <- function(object, new_data, ...) {
  col_names <- names(object$ordered)

  if (is.list(object$levels)) {
    new_data[, col_names] <-
      map2_df(new_data[, col_names],
              object$levels,
              make_factor,
              ord = object$ordered[1])
  } else {
    new_data[, col_names] <-
      map_df(new_data[, col_names],
             make_factor,
             lvl = object$levels,
             ord = object$ordered[1])
  }

  if (!is_tibble(new_data))
    new_data <- as_tibble(new_data)
  new_data
}

print.step_string2factor <-
  function(x, width = max(20, options()$width - 30), ...) {
    cat("Factor variables from ")
    printer(names(x$ordered), x$terms, x$trained, width = width)
    invisible(x)
  }


#' @rdname step_string2factor
#' @param x A `step_string2factor` object.
#' @export
tidy.step_string2factor <- function(x, ...) {
  term_names <- sel2char(x$terms)
  p <- length(term_names)
  if (is_trained(x)) {
    res <- tibble(terms = term_names,
                  ordered = rep(x$ordered, p))
  } else {
    res <- tibble(terms = term_names,
                  ordered = rep(x$ordered, p))
  }
  res$id <- x$id
  res
}