File: unorder.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (136 lines) | stat: -rw-r--r-- 3,831 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#' Convert Ordered Factors to Unordered Factors
#'
#' `step_unorder` creates a *specification* of a recipe
#'  step that will transform the data.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#'  variables are affected by the step. See [selections()]
#'  for more details. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this step since no new variables are
#'  created.
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` (the
#'  columns that will be affected).
#' @keywords datagen
#' @concept preprocessing
#' @concept ordinal_data
#' @export
#' @details The factors level order is preserved during the transformation.
#' @examples
#' lmh <- c("Low", "Med", "High")
#'
#' examples <- data.frame(X1 = factor(rep(letters[1:4], each = 3)),
#'                        X2 = ordered(rep(lmh, each = 4),
#'                                     levels = lmh))
#'
#' rec <- recipe(~ X1 + X2, data = examples)
#'
#' factor_trans <- rec  %>%
#'   step_unorder(all_predictors())
#'
#' factor_obj <- prep(factor_trans, training = examples)
#'
#' transformed_te <- bake(factor_obj, examples)
#' table(transformed_te$X2, examples$X2)
#'
#' tidy(factor_trans, number = 1)
#' tidy(factor_obj, number = 1)
#' @seealso [step_ordinalscore()] [recipe()]
#' [prep.recipe()] [bake.recipe()]

step_unorder <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           columns = NULL,
           skip = FALSE,
           id = rand_id("unorder")) {
    add_step(recipe,
             step_unorder_new(
               terms = ellipse_check(...),
               role = role,
               trained = trained,
               columns = columns,
               skip = skip,
               id = id
             ))
  }

step_unorder_new <-
  function(terms, role, trained, columns, skip, id) {
    step(
      subclass = "unorder",
      terms = terms,
      role = role,
      trained = trained,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_unorder <- function(x, training, info = NULL, ...) {
  col_names <- eval_select_recipes(x$terms, training, info)
  order_check <- vapply(training[, col_names],
                        is.ordered,
                        logical(1L))
  if(all(!order_check)) {
    rlang::abort("`step_unorder` required ordered factors.")
  } else {
    if(any(!order_check)) {
      bad_cols <- names(order_check)[!order_check]
      bad_cols <- paste0(bad_cols, collapse = ", ")
      rlang::warn(
        paste0(
          "`step_unorder` requires ordered factors. Variables ",
          bad_cols,
          " will be ignored."
        )
      )
      col_names <- names(order_check)[order_check]
    }
  }

  step_unorder_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    columns = col_names,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_unorder <- function(object, new_data, ...) {
  for (i in seq_along(object$columns))
    new_data[, object$columns[i]] <-
      factor(as.character(getElement(new_data, object$columns[i])),
             levels = levels(getElement(new_data, object$columns[i])))
  as_tibble(new_data)
}


print.step_unorder <-
  function(x, width = max(20, options()$width - 33), ...) {
    cat("Unordered variables ", sep = "")
    printer(x$columns, x$terms, x$trained, width = width)
    invisible(x)
  }


#' @rdname step_unorder
#' @param x A `step_unorder` object.
#' @export
tidy.step_unorder <- function(x, ...) {
  res <- simple_terms(x, ...)
  res$id <- x$id
  res
}