File: upsample.R

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (243 lines) | stat: -rw-r--r-- 7,361 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#' Up-Sample a Data Set Based on a Factor Variable
#'
#' @description
#' \if{html}{\figure{lifecycle-soft-deprecated.svg}{alt="lifecycle-soft-deprecated"}}
#'
#' `step_upsample` is now available as `themis::step_upsample()`. This
#'  function creates a *specification* of a recipe step that
#'  will replicate rows of a data set to make the occurrence of
#'  levels in a specific factor level equal.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose which
#'  variable is used to sample the data. See [selections()]
#'  for more details. The selection should result in _single
#'  factor variable_. For the `tidy` method, these are not
#'  currently used.
#' @param role Not used by this step since no new variables are
#'  created.
#' @param column A character string of the variable name that will
#'  be populated (eventually) by the `...` selectors.
#' @param over_ratio A numeric value for the ratio of the
#'  majority-to-minority frequencies. The default value (1) means
#'  that all other levels are sampled up to have the same
#'  frequency as the most occurring level. A value of 0.5 would mean
#'  that the minority levels will have (at most) (approximately)
#'  half as many rows than the majority level.
#' @param ratio Deprecated argument; same as `over_ratio`.
#' @param target An integer that will be used to subsample. This
#'  should not be set by the user and will be populated by `prep`.
#' @param seed An integer that will be used as the seed when upsampling.
#' @return An updated version of `recipe` with the new step
#'  added to the sequence of existing steps (if any). For the
#'  `tidy` method, a tibble with columns `terms` which is
#'  the variable used to sample.
#' @details
#' Up-sampling is intended to be performed on the _training_ set alone. For
#'  this reason, the default is `skip = TRUE`. It is advisable to use
#'  `prep(recipe, retain = TRUE)` when preparing the recipe; in this way
#'  `bake(object, new_data = NULL)` can be used to obtain the up-sampled version
#'  of the data.
#'
#' If there are missing values in the factor variable that is used
#'  to define the sampling, missing data are selected at random in
#'  the same way that the other factor levels are sampled. Missing
#'  values are not used to determine the amount of data in the
#'  majority level (see example below).
#'
#' For any data with factor levels occurring with the same
#'  frequency as the majority level, all data will be retained.
#'
#' All columns in the data are sampled and returned by [bake()].
#'
#' When used in modeling, users should strongly consider using the
#'  option `skip = TRUE` so that the extra sampling is _not_
#'  conducted outside of the training set.
#'
#' @keywords datagen
#' @concept preprocessing
#' @concept subsampling
#' @export
#' @examples
#' library(modeldata)
#' data(okc)
#'
#' orig <- table(okc$diet, useNA = "always")
#'
#' sort(orig, decreasing = TRUE)
#'
#' up_rec <- recipe( ~ ., data = okc) %>%
#'   # Bring the minority levels up to about 200 each
#'   # 200/16562 is approx 0.0121
#'   step_upsample(diet, over_ratio = 0.0121) %>%
#'   prep(training = okc)
#'
#' training <- table(bake(up_rec, new_data = NULL)$diet, useNA = "always")
#'
#' # Since `skip` defaults to TRUE, baking the step has no effect
#' baked_okc <- bake(up_rec, new_data = okc)
#' baked <- table(baked_okc$diet, useNA = "always")
#'
#' # Note that if the original data contained more rows than the
#' # target n (= ratio * majority_n), the data are left alone:
#' data.frame(
#'   level = names(orig),
#'   orig_freq = as.vector(orig),
#'   train_freq = as.vector(training),
#'   baked_freq = as.vector(baked)
#' )

step_upsample <-
  function(recipe, ...,  over_ratio = 1, ratio = NA, role = NA, trained = FALSE,
           column = NULL, target = NA, skip = TRUE,
           seed = sample.int(10^5, 1),
           id = rand_id("upsample")) {

    lifecycle::deprecate_soft("0.1.13",
                              "recipes::step_upsample()",
                              "themis::step_upsample()")

    if (!is.na(ratio) & all(over_ratio != ratio)) {
      message(
        paste(
          "The `ratio` argument is now deprecated in favor of `over_ratio`.",
          "`ratio` will be removed in a subsequent version."
        )
      )
      if (!is.na(ratio)) {
        over_ratio <- ratio
      }
    }

    add_step(recipe,
             step_upsample_new(
               terms = ellipse_check(...),
               over_ratio = over_ratio,
               ratio = ratio,
               role = role,
               trained = trained,
               column = column,
               target = target,
               skip = skip,
               seed = seed,
               id = id
             ))
  }

step_upsample_new <-
  function(terms, over_ratio, ratio, role, trained, column, target, skip, seed, id) {
    step(
      subclass = "upsample",
      terms = terms,
      over_ratio = over_ratio,
      ratio = ratio,
      role = role,
      trained = trained,
      column = column,
      target = target,
      skip = skip,
      id = id,
      seed = seed
    )
  }


#' @export
prep.step_upsample <- function(x, training, info = NULL, ...) {
  col_name <- eval_select_recipes(x$terms, training, info)

  if (length(col_name) != 1)
    rlang::abort("Please select a single factor variable.")
  if (!is.factor(training[[col_name]]))
    rlang::abort(col_name, " should be a factor variable.")


  obs_freq <- table(training[[col_name]])
  majority <- max(obs_freq)

  step_upsample_new(
    terms = x$terms,
    ratio = x$ratio,
    over_ratio = x$over_ratio,
    role = x$role,
    trained = TRUE,
    column = col_name,
    target = floor(majority * x$over_ratio),
    skip = x$skip,
    id = x$id,
    seed = x$seed
  )
}


supsamp <- function(x, num) {
  n <- nrow(x)
  if (nrow(x) == num)
    out <- x
  else
    # upsampling is done with replacement
    out <- x[sample(1:n, max(num, n), replace = TRUE), ]
  out
}

#' @export
bake.step_upsample <- function(object, new_data, ...) {
  if (any(is.na(new_data[[object$column]])))
    missing <- new_data[is.na(new_data[[object$column]]),]
  else
    missing <- NULL
  split_up <- split(new_data, new_data[[object$column]])

  # Upsample with seed for reproducibility
  with_seed(
    seed = object$seed,
    code = {
      new_data <- map_dfr(split_up, supsamp, num = object$target)
      if (!is.null(missing)) {
        new_data <- bind_rows(new_data, supsamp(missing, object$target))
      }
    }
  )

  as_tibble(new_data)
}


print.step_upsample <-
  function(x, width = max(20, options()$width - 26), ...) {
    cat("Up-sampling based on ", sep = "")
    printer(x$column, x$terms, x$trained, width = width)
    invisible(x)
  }

#' @rdname step_upsample
#' @param x A `step_upsample` object.
#' @export
tidy.step_upsample <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = x$column)
  }
  else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = unname(term_names))
  }
  res$id <- x$id
  res
}



#' @rdname tunable.step
#' @export
tunable.step_upsample <- function(x, ...) {
  tibble::tibble(
    name = c("over_ratio"),
    call_info = list(
      list(pkg = "dials", fun = "over_ratio")
    ),
    source = "recipe",
    component = "step_upsample",
    component_id = x$id
  )
}