1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
## ----ex_setup, include=FALSE--------------------------------------------------
knitr::opts_chunk$set(
message = FALSE,
digits = 3,
collapse = TRUE,
comment = "#>"
)
options(digits = 3)
library(recipes)
## ----formula-roles------------------------------------------------------------
library(recipes)
recipe(Species ~ ., data = iris) %>% summary()
recipe( ~ Species, data = iris) %>% summary()
recipe(Sepal.Length + Sepal.Width ~ ., data = iris) %>% summary()
## ----formula-update-----------------------------------------------------------
library(modeldata)
data(biomass)
recipe(HHV ~ ., data = biomass) %>%
update_role(dataset, new_role = "dataset split variable") %>%
update_role(sample, new_role = "sample ID") %>%
summary()
## ----formula-rm---------------------------------------------------------------
recipe(HHV ~ ., data = biomass) %>%
remove_role(sample, old_role = "predictor") %>%
summary()
## ----formula-rm-fail, error=TRUE----------------------------------------------
recipe(HHV ~ ., data = biomass) %>%
update_role(sample, new_role = NA_character_)
## ----formula-add--------------------------------------------------------------
multi_role <- recipe(HHV ~ ., data = biomass) %>%
update_role(dataset, new_role = "dataset split variable") %>%
update_role(sample, new_role = "sample ID") %>%
# Roles below from https://wordcounter.net/random-word-generator
add_role(sample, new_role = "jellyfish")
multi_role %>%
summary()
## -----------------------------------------------------------------------------
multi_role %>%
update_role(sample, new_role = "flounder", old_role = "jellyfish") %>%
summary()
## -----------------------------------------------------------------------------
multi_role %>%
add_role(HHV, new_role = "nocenter") %>%
step_center(all_predictors(), -has_role("nocenter")) %>%
prep(training = biomass, retain = TRUE) %>%
juice() %>%
head()
## ----x-none-------------------------------------------------------------------
recipe(biomass) %>%
summary()
## ----x-none-updated-----------------------------------------------------------
recipe(biomass) %>%
update_role(contains("gen"), new_role = "lunchroom") %>%
update_role(sample, HHV, new_role = "snail") %>%
summary()
## ----dummy--------------------------------------------------------------------
recipe( ~ ., data = iris) %>%
step_dummy(Species) %>%
prep() %>%
juice(all_predictors()) %>%
dplyr::select(starts_with("Species")) %>%
names()
# or something else
recipe( ~ ., data = iris) %>%
step_dummy(Species, role = "trousers") %>%
prep() %>%
juice(has_role("trousers")) %>%
names()
|