1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/selections.R
\name{has_role}
\alias{has_role}
\alias{all_predictors}
\alias{all_outcomes}
\alias{has_type}
\alias{all_numeric}
\alias{all_nominal}
\alias{current_info}
\title{Role Selection}
\usage{
has_role(match = "predictor")
all_predictors()
all_outcomes()
has_type(match = "numeric")
all_numeric()
all_nominal()
current_info()
}
\arguments{
\item{match}{A single character string for the query. Exact
matching is used (i.e. regular expressions won't work).}
}
\value{
Selector functions return an integer vector.
\code{current_info()} returns an environment with objects \code{vars} and \code{data}.
}
\description{
\code{has_role()}, \code{all_predictors()}, and \code{all_outcomes()} can be used to
select variables in a formula that have certain roles.
Similarly, \code{has_type()}, \code{all_numeric()}, and \code{all_nominal()} are used
to select columns based on their data type.
See \code{?selections} for more details.
\code{current_info()} is an internal function.
All of these functions have have limited utility
outside of column selection in step functions.
}
\examples{
library(modeldata)
data(biomass)
rec <- recipe(biomass) \%>\%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"
) \%>\%
update_role(HHV, new_role = "outcome") \%>\%
update_role(sample, new_role = "id variable") \%>\%
update_role(dataset, new_role = "splitting indicator")
recipe_info <- summary(rec)
recipe_info
# Centering on all predictors except carbon
rec \%>\%
step_center(all_predictors(), -carbon) \%>\%
prep(training = biomass) \%>\%
bake(new_data = NULL)
}
\keyword{datagen}
|