1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/classdist.R
\name{step_classdist}
\alias{step_classdist}
\alias{tidy.step_classdist}
\title{Distances to Class Centroids}
\usage{
step_classdist(
recipe,
...,
class,
role = "predictor",
trained = FALSE,
mean_func = mean,
cov_func = cov,
pool = FALSE,
log = TRUE,
objects = NULL,
prefix = "classdist_",
skip = FALSE,
id = rand_id("classdist")
)
\method{tidy}{step_classdist}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose which
variables are affected by the step. See \code{\link[=selections]{selections()}}
for more details. For the \code{tidy} method, these are not
currently used.}
\item{class}{A single character string that specifies a single
categorical variable to be used as the class.}
\item{role}{For model terms created by this step, what analysis
role should they be assigned?. By default, the function assumes
that resulting distances will be used as predictors in a model.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{mean_func}{A function to compute the center of the
distribution.}
\item{cov_func}{A function that computes the covariance matrix}
\item{pool}{A logical: should the covariance matrix be computed
by pooling the data for all of the classes?}
\item{log}{A logical: should the distances be transformed by
the natural log function?}
\item{objects}{Statistics are stored here once this step has
been trained by \code{\link[=prep.recipe]{prep.recipe()}}.}
\item{prefix}{A character string that defines the naming convention for
new distance columns. Defaults to \code{"classdist_"}. See Details below.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}
\item{id}{A character string that is unique to this step to identify it.}
\item{x}{A \code{step_classdist} object.}
}
\value{
An updated version of \code{recipe} with the new step
added to the sequence of existing steps (if any). For the
\code{tidy} method, a tibble with columns \code{terms} (the
selectors or variables selected), \code{value} (the centroid of
the class), and \code{class}.
}
\description{
\code{step_classdist} creates a \emph{specification} of a
recipe step that will convert numeric data into Mahalanobis
distance measurements to the data centroid. This is done for
each value of a categorical class variable.
}
\details{
\code{step_classdist} will create a new column for every
unique value of the \code{class} variable.
The resulting variables will not replace the original values
and by default have the prefix \code{classdist_}. The naming format can be
changed using the \code{prefix} argument.
Note that, by default, the default covariance function requires
that each class should have at least as many rows as variables
listed in the \code{terms} argument. If \code{pool = TRUE},
there must be at least as many data points are variables
overall.
}
\examples{
# in case of missing data...
mean2 <- function(x) mean(x, na.rm = TRUE)
# define naming convention
rec <- recipe(Species ~ ., data = iris) \%>\%
step_classdist(all_predictors(), class = "Species",
pool = FALSE, mean_func = mean2, prefix = "centroid_")
# default naming
rec <- recipe(Species ~ ., data = iris) \%>\%
step_classdist(all_predictors(), class = "Species",
pool = FALSE, mean_func = mean2)
rec_dists <- prep(rec, training = iris)
dists_to_species <- bake(rec_dists, new_data = iris, everything())
## on log scale:
dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
dists_to_species[, c("Species", dist_cols)]
tidy(rec, number = 1)
tidy(rec_dists, number = 1)
}
\concept{dimension_reduction}
\concept{preprocessing}
\keyword{datagen}
|