File: step_classdist.Rd

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (126 lines) | stat: -rw-r--r-- 4,246 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/classdist.R
\name{step_classdist}
\alias{step_classdist}
\alias{tidy.step_classdist}
\title{Distances to Class Centroids}
\usage{
step_classdist(
  recipe,
  ...,
  class,
  role = "predictor",
  trained = FALSE,
  mean_func = mean,
  cov_func = cov,
  pool = FALSE,
  log = TRUE,
  objects = NULL,
  prefix = "classdist_",
  skip = FALSE,
  id = rand_id("classdist")
)

\method{tidy}{step_classdist}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose which
variables are affected by the step. See \code{\link[=selections]{selections()}}
for more details. For the \code{tidy} method, these are not
currently used.}

\item{class}{A single character string that specifies a single
categorical variable to be used as the class.}

\item{role}{For model terms created by this step, what analysis
role should they be assigned?. By default, the function assumes
that resulting distances will be used as predictors in a model.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{mean_func}{A function to compute the center of the
distribution.}

\item{cov_func}{A function that computes the covariance matrix}

\item{pool}{A logical: should the covariance matrix be computed
by pooling the data for all of the classes?}

\item{log}{A logical: should the distances be transformed by
the natural log function?}

\item{objects}{Statistics are stored here once this step has
been trained by \code{\link[=prep.recipe]{prep.recipe()}}.}

\item{prefix}{A character string that defines the naming convention for
new distance columns. Defaults to \code{"classdist_"}. See Details below.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}

\item{id}{A character string that is unique to this step to identify it.}

\item{x}{A \code{step_classdist} object.}
}
\value{
An updated version of \code{recipe} with the new step
added to the sequence of existing steps (if any). For the
\code{tidy} method, a tibble with columns \code{terms} (the
selectors or variables selected), \code{value} (the centroid of
the class), and \code{class}.
}
\description{
\code{step_classdist} creates a \emph{specification} of a
recipe step that will convert numeric data into Mahalanobis
distance measurements to the data centroid. This is done for
each value of a categorical class variable.
}
\details{
\code{step_classdist} will create a new column for every
unique value of the \code{class} variable.
The resulting variables will not replace the original values
and by default have the prefix \code{classdist_}. The naming format can be
changed using the \code{prefix} argument.

Note that, by default, the default covariance function requires
that each class should have at least as many rows as variables
listed in the \code{terms} argument. If \code{pool = TRUE},
there must be at least as many data points are variables
overall.
}
\examples{

# in case of missing data...
mean2 <- function(x) mean(x, na.rm = TRUE)

# define naming convention
rec <- recipe(Species ~ ., data = iris) \%>\%
  step_classdist(all_predictors(), class = "Species",
                 pool = FALSE, mean_func = mean2, prefix = "centroid_")

# default naming
rec <- recipe(Species ~ ., data = iris) \%>\%
  step_classdist(all_predictors(), class = "Species",
                 pool = FALSE, mean_func = mean2)

rec_dists <- prep(rec, training = iris)

dists_to_species <- bake(rec_dists, new_data = iris, everything())
## on log scale:
dist_cols <- grep("classdist", names(dists_to_species), value = TRUE)
dists_to_species[, c("Species", dist_cols)]

tidy(rec, number = 1)
tidy(rec_dists, number = 1)
}
\concept{dimension_reduction}
\concept{preprocessing}
\keyword{datagen}