1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/lowerimpute.R
\name{step_lowerimpute}
\alias{step_lowerimpute}
\alias{tidy.step_lowerimpute}
\title{Impute Numeric Data Below the Threshold of Measurement}
\usage{
step_lowerimpute(
recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("lowerimpute")
)
\method{tidy}{step_lowerimpute}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose which
variables are affected by the step. See \code{\link[=selections]{selections()}}
for more details. For the \code{tidy} method, these are not
currently used.}
\item{role}{Not used by this step since no new variables are
created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{threshold}{A named numeric vector of lower bounds. This is
\code{NULL} until computed by \code{\link[=prep.recipe]{prep.recipe()}}.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}
\item{id}{A character string that is unique to this step to identify it.}
\item{x}{A \code{step_lowerimpute} object.}
}
\value{
An updated version of \code{recipe} with the new step
added to the sequence of existing steps (if any). For the
\code{tidy} method, a tibble with columns \code{terms} (the
selectors or variables selected) and \code{value} for the estimated
threshold.
}
\description{
\code{step_lowerimpute} creates a \emph{specification} of a recipe step
designed for cases where the non-negative numeric data cannot be
measured below a known value. In these cases, one method for
imputing the data is to substitute the truncated value by a
random uniform number between zero and the truncation point.
}
\details{
\code{step_lowerimpute} estimates the variable minimums
from the data used in the \code{training} argument of \code{prep.recipe}.
\code{bake.recipe} then simulates a value for any data at the minimum
with a random uniform value between zero and the minimum.
}
\examples{
library(recipes)
library(modeldata)
data(biomass)
## Truncate some values to emulate what a lower limit of
## the measurement system might look like
biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)
biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]
rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr)
impute_rec <- rec \%>\%
step_lowerimpute(carbon, hydrogen)
tidy(impute_rec, number = 1)
impute_rec <- prep(impute_rec, training = biomass_tr)
tidy(impute_rec, number = 1)
transformed_te <- bake(impute_rec, biomass_te)
plot(transformed_te$carbon, biomass_te$carbon,
ylab = "pre-imputation", xlab = "imputed")
}
\concept{imputation}
\concept{preprocessing}
\keyword{datagen}
|