File: step_lowerimpute.Rd

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (102 lines) | stat: -rw-r--r-- 3,361 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/lowerimpute.R
\name{step_lowerimpute}
\alias{step_lowerimpute}
\alias{tidy.step_lowerimpute}
\title{Impute Numeric Data Below the Threshold of Measurement}
\usage{
step_lowerimpute(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  threshold = NULL,
  skip = FALSE,
  id = rand_id("lowerimpute")
)

\method{tidy}{step_lowerimpute}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose which
variables are affected by the step. See \code{\link[=selections]{selections()}}
for more details. For the \code{tidy} method, these are not
currently used.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{threshold}{A named numeric vector of lower bounds. This is
\code{NULL} until computed by \code{\link[=prep.recipe]{prep.recipe()}}.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}

\item{id}{A character string that is unique to this step to identify it.}

\item{x}{A \code{step_lowerimpute} object.}
}
\value{
An updated version of \code{recipe} with the new step
added to the sequence of existing steps (if any). For the
\code{tidy} method, a tibble with columns \code{terms} (the
selectors or variables selected) and \code{value} for the estimated
threshold.
}
\description{
\code{step_lowerimpute} creates a \emph{specification} of a recipe step
designed for cases where the non-negative numeric data cannot be
measured below a known value. In these cases, one method for
imputing the data is to substitute the truncated value by a
random uniform number between zero and the truncation point.
}
\details{
\code{step_lowerimpute} estimates the variable minimums
from the data used in the \code{training} argument of \code{prep.recipe}.
\code{bake.recipe} then simulates a value for any data at the minimum
with a random uniform value between zero and the minimum.
}
\examples{
library(recipes)
library(modeldata)
data(biomass)

## Truncate some values to emulate what a lower limit of
## the measurement system might look like

biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)

biomass_tr <- biomass[biomass$dataset == "Training",]
biomass_te <- biomass[biomass$dataset == "Testing",]

rec <- recipe(HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
              data = biomass_tr)

impute_rec <- rec \%>\%
  step_lowerimpute(carbon, hydrogen)

tidy(impute_rec, number = 1)

impute_rec <- prep(impute_rec, training = biomass_tr)

tidy(impute_rec, number = 1)

transformed_te <- bake(impute_rec, biomass_te)

plot(transformed_te$carbon, biomass_te$carbon,
     ylab = "pre-imputation", xlab = "imputed")
}
\concept{imputation}
\concept{preprocessing}
\keyword{datagen}