1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/medianimpute.R
\name{step_medianimpute}
\alias{step_medianimpute}
\alias{tidy.step_medianimpute}
\title{Impute Numeric Data Using the Median}
\usage{
step_medianimpute(
recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("medianimpute")
)
\method{tidy}{step_medianimpute}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose which variables are
affected by the step. See \code{\link[=selections]{selections()}} for more details. For the \code{tidy}
method, these are not currently used.}
\item{role}{Not used by this step since no new variables are created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{medians}{A named numeric vector of medians. This is \code{NULL} until
computed by \code{\link[=prep.recipe]{prep.recipe()}}. Note that, if the original data are integers,
the median will be converted to an integer to maintain the same data type.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}
\item{id}{A character string that is unique to this step to identify it.}
\item{x}{A \code{step_medianimpute} object.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of existing steps (if any). For the \code{tidy} method, a tibble with
columns \code{terms} (the selectors or variables selected) and \code{model} (the
median value).
}
\description{
\code{step_medianimpute} creates a \emph{specification} of a recipe step that will
substitute missing values of numeric variables by the training set median of
those variables.
}
\details{
\code{step_medianimpute} estimates the variable medians from the data
used in the \code{training} argument of \code{prep.recipe}. \code{bake.recipe} then applies
the new values to new data sets using these medians.
}
\examples{
library(modeldata)
data("credit_data")
## missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)
credit_tr <- credit_data[ in_training, ]
credit_te <- credit_data[-in_training, ]
missing_examples <- c(14, 394, 565)
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec \%>\%
step_medianimpute(Income, Assets, Debt)
imp_models <- prep(impute_rec, training = credit_tr)
imputed_te <- bake(imp_models, new_data = credit_te, everything())
credit_te[missing_examples,]
imputed_te[missing_examples, names(credit_te)]
tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)
}
\concept{imputation}
\concept{preprocessing}
\keyword{datagen}
|