File: step_sqrt.Rd

package info (click to toggle)
r-cran-recipes 0.1.15%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,496 kB
  • sloc: sh: 37; makefile: 2
file content (84 lines) | stat: -rw-r--r-- 2,605 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sqrt.R
\name{step_sqrt}
\alias{step_sqrt}
\alias{tidy.step_sqrt}
\title{Square Root Transformation}
\usage{
step_sqrt(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  columns = NULL,
  skip = FALSE,
  id = rand_id("sqrt")
)

\method{tidy}{step_sqrt}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose which
variables will be transformed. See \code{\link[=selections]{selections()}} for
more details. For the \code{tidy} method, these are not
currently used.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{columns}{A character string of variable names that will
be populated (eventually) by the \code{terms} argument.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}

\item{id}{A character string that is unique to this step to identify it.}

\item{x}{A \code{step_sqrt} object.}
}
\value{
An updated version of \code{recipe} with the new step
added to the sequence of existing steps (if any). For the
\code{tidy} method, a tibble with columns \code{terms} which
is the columns that will be affected.
}
\description{
\code{step_sqrt} creates a \emph{specification} of a recipe
step that will square root transform the data.
}
\examples{
set.seed(313)
examples <- matrix(rnorm(40)^2, ncol = 2)
examples <- as.data.frame(examples)

rec <- recipe(~ V1 + V2, data = examples)

sqrt_trans <- rec  \%>\%
  step_sqrt(all_predictors())

sqrt_obj <- prep(sqrt_trans, training = examples)

transformed_te <- bake(sqrt_obj, examples)
plot(examples$V1, transformed_te$V1)

tidy(sqrt_trans, number = 1)
tidy(sqrt_obj, number = 1)
}
\seealso{
\code{\link[=step_logit]{step_logit()}} \code{\link[=step_invlogit]{step_invlogit()}}
\code{\link[=step_log]{step_log()}}  \code{\link[=step_hyperbolic]{step_hyperbolic()}} \code{\link[=recipe]{recipe()}}
\code{\link[=prep.recipe]{prep.recipe()}} \code{\link[=bake.recipe]{bake.recipe()}}
}
\concept{preprocessing}
\concept{transformation_methods}
\keyword{datagen}