1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sqrt.R
\name{step_sqrt}
\alias{step_sqrt}
\alias{tidy.step_sqrt}
\title{Square Root Transformation}
\usage{
step_sqrt(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("sqrt")
)
\method{tidy}{step_sqrt}(x, ...)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose which
variables will be transformed. See \code{\link[=selections]{selections()}} for
more details. For the \code{tidy} method, these are not
currently used.}
\item{role}{Not used by this step since no new variables are
created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{columns}{A character string of variable names that will
be populated (eventually) by the \code{terms} argument.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake.recipe]{bake.recipe()}}? While all operations are baked
when \code{\link[=prep.recipe]{prep.recipe()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations}
\item{id}{A character string that is unique to this step to identify it.}
\item{x}{A \code{step_sqrt} object.}
}
\value{
An updated version of \code{recipe} with the new step
added to the sequence of existing steps (if any). For the
\code{tidy} method, a tibble with columns \code{terms} which
is the columns that will be affected.
}
\description{
\code{step_sqrt} creates a \emph{specification} of a recipe
step that will square root transform the data.
}
\examples{
set.seed(313)
examples <- matrix(rnorm(40)^2, ncol = 2)
examples <- as.data.frame(examples)
rec <- recipe(~ V1 + V2, data = examples)
sqrt_trans <- rec \%>\%
step_sqrt(all_predictors())
sqrt_obj <- prep(sqrt_trans, training = examples)
transformed_te <- bake(sqrt_obj, examples)
plot(examples$V1, transformed_te$V1)
tidy(sqrt_trans, number = 1)
tidy(sqrt_obj, number = 1)
}
\seealso{
\code{\link[=step_logit]{step_logit()}} \code{\link[=step_invlogit]{step_invlogit()}}
\code{\link[=step_log]{step_log()}} \code{\link[=step_hyperbolic]{step_hyperbolic()}} \code{\link[=recipe]{recipe()}}
\code{\link[=prep.recipe]{prep.recipe()}} \code{\link[=bake.recipe]{bake.recipe()}}
}
\concept{preprocessing}
\concept{transformation_methods}
\keyword{datagen}
|