File: YeoJohnson.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (274 lines) | stat: -rw-r--r-- 7,491 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#' Yeo-Johnson Transformation
#'
#' `step_YeoJohnson` creates a *specification* of a
#'  recipe step that will transform data using a simple Yeo-Johnson
#'  transformation.
#'
#' @inheritParams step_center
#' @param lambdas A numeric vector of transformation values. This
#'  is `NULL` until computed by [prep()].
#' @param limits A length 2 numeric vector defining the range to
#'  compute the transformation parameter lambda.
#' @param num_unique An integer where data that have less possible
#'  values will not be evaluated for a transformation.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details The Yeo-Johnson transformation is very similar to the
#'  Box-Cox but does not require the input variables to be strictly
#'  positive. In the package, the partial log-likelihood function is
#'  directly optimized within a reasonable set of transformation
#'  values (which can be changed by the user).
#'
#' This transformation is typically done on the outcome variable
#'  using the residuals for a statistical model (such as ordinary
#'  least squares). Here, a simple null model (intercept only) is
#'  used to apply the transformation to the *predictor*
#'  variables individually. This can have the effect of making the
#'  variable distributions more symmetric.
#'
#' If the transformation parameters are estimated to be very
#'  closed to the bounds, or if the optimization fails, a value of
#'  `NA` is used and no transformation is applied.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `value` (the
#' lambda estimate) is returned.
#'
#' @template case-weights-not-supported
#'
#' @references Yeo, I. K., and Johnson, R. A. (2000). A new family of power
#'   transformations to improve normality or symmetry. *Biometrika*.
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#'   HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'   data = biomass_tr
#' )
#'
#' yj_transform <- step_YeoJohnson(rec, all_numeric())
#'
#' yj_estimates <- prep(yj_transform, training = biomass_tr)
#'
#' yj_te <- bake(yj_estimates, biomass_te)
#'
#' plot(density(biomass_te$sulfur), main = "before")
#' plot(density(yj_te$sulfur), main = "after")
#'
#' tidy(yj_transform, number = 1)
#' tidy(yj_estimates, number = 1)
step_YeoJohnson <-
  function(recipe, ..., role = NA, trained = FALSE,
           lambdas = NULL, limits = c(-5, 5), num_unique = 5,
           na_rm = TRUE,
           skip = FALSE,
           id = rand_id("YeoJohnson")) {
    add_step(
      recipe,
      step_YeoJohnson_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        lambdas = lambdas,
        limits = sort(limits)[1:2],
        num_unique = num_unique,
        na_rm = na_rm,
        skip = skip,
        id = id
      )
    )
  }

step_YeoJohnson_new <-
  function(terms, role, trained, lambdas, limits, num_unique, na_rm, skip, id) {
    step(
      subclass = "YeoJohnson",
      terms = terms,
      role = role,
      trained = trained,
      lambdas = lambdas,
      limits = limits,
      num_unique = num_unique,
      na_rm = na_rm,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_YeoJohnson <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  values <- vapply(
    training[, col_names],
    estimate_yj,
    c(lambda = 0),
    limits = x$limits,
    num_unique = x$num_unique,
    na_rm = x$na_rm
  )
  values <- values[!is.na(values)]
  step_YeoJohnson_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    lambdas = values,
    limits = x$limits,
    num_unique = x$num_unique,
    na_rm = x$na_rm,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_YeoJohnson <- function(object, new_data, ...) {
  check_new_data(names(object$lambdas), object, new_data)

  if (length(object$lambdas) == 0) {
    return(as_tibble(new_data))
  }
  param <- names(object$lambdas)
  for (i in seq_along(object$lambdas)) {
    new_data[, param[i]] <-
      yj_transform(getElement(new_data, param[i]),
        lambda = object$lambdas[param[i]]
      )
  }
  new_data
}

print.step_YeoJohnson <-
  function(x, width = max(20, options()$width - 39), ...) {
    title <- "Yeo-Johnson transformation on "
    print_step(names(x$lambdas), x$terms, x$trained, title, width)
    invisible(x)
  }

## computes the new data given a lambda
#' Internal Functions
#'
#' These are not to be used directly by the users.
#' @export
#' @keywords internal
#' @rdname recipes-internal
yj_transform <- function(x, lambda, ind_neg = NULL, eps = 0.001) {
  if (is.na(lambda)) {
    return(x)
  }
  if (!inherits(x, "tbl_df") || is.data.frame(x)) {
    x <- unlist(x, use.names = FALSE)
  } else {
    if (!is.vector(x)) {
      x <- as.vector(x)
    }
  }
  # TODO case weights: can we use weights here?
  if (is.null(ind_neg)) {
    dat_neg <- x < 0
    ind_neg <- list(is = which(dat_neg), not = which(!dat_neg))
  }
  not_neg <- ind_neg[["not"]]
  is_neg <- ind_neg[["is"]]

  nn_trans <- function(x, lambda) {
    if (abs(lambda) < eps) {
      log(x + 1)
    } else {
      ((x + 1)^lambda - 1) / lambda
    }
  }

  ng_trans <- function(x, lambda) {
    if (abs(lambda - 2) < eps) {
      -log(-x + 1)
    } else {
      -((-x + 1)^(2 - lambda) - 1) / (2 - lambda)
    }
  }

  if (length(not_neg) > 0) {
    x[not_neg] <- nn_trans(x[not_neg], lambda)
  }

  if (length(is_neg) > 0) {
    x[is_neg] <- ng_trans(x[is_neg], lambda)
  }
  x
}


## Helper for the log-likelihood calc for eq 3.1 of Yeo, I. K.,
## & Johnson, R. A. (2000). A new family of power transformations
## to improve normality or symmetry. Biometrika. page 957
ll_yj <- function(lambda, y, ind_neg, const, eps = 0.001) {
  n <- length(y)
  y_t <- yj_transform(y, lambda, ind_neg)
  mu_t <- mean(y_t)
  var_t <- var(y_t) * (n - 1) / n
  res <- -.5 * n * log(var_t) + (lambda - 1) * const
  res
}

## eliminates missing data and returns -llh
yj_obj <- function(lam, dat, ind_neg, const) {
  ll_yj(lambda = lam, y = dat, ind_neg = ind_neg, const = const)
}

## estimates the values
#' @export
#' @keywords internal
#' @rdname recipes-internal
estimate_yj <- function(dat,
                        limits = c(-5, 5),
                        num_unique = 5,
                        na_rm = TRUE,
                        call = caller_env(2)) {
  na_rows <- which(is.na(dat))
  if (length(na_rows) > 0) {
    if (na_rm) {
      dat <- dat[-na_rows]
    } else {
      rlang::abort(
        "Missing values are not allowed for the YJ transformation. See `na_rm` option",
        call = call
      )
    }
  }

  eps <- .001
  if (length(unique(dat)) < num_unique) {
    return(NA)
  }
  dat_neg <- dat < 0
  ind_neg <- list(is = which(dat_neg), not = which(!dat_neg))

  const <- sum(sign(dat) * log(abs(dat) + 1))

  res <- optimize(
    yj_obj,
    interval = limits,
    maximum = TRUE,
    dat = dat,
    ind_neg = ind_neg,
    const = const,
    tol = .0001
  )
  lam <- res$maximum
  if (abs(limits[1] - lam) <= eps | abs(limits[2] - lam) <= eps) {
    lam <- NA
  }
  lam
}


#' @rdname tidy.recipe
#' @export
tidy.step_YeoJohnson <- tidy.step_BoxCox