1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
#' Sort rows using dplyr
#'
#' `step_arrange` creates a *specification* of a recipe step
#' that will sort rows using [dplyr::arrange()].
#'
#' @inheritParams step_center
#' @param ... Comma separated list of unquoted variable names.
#' Use `desc()`` to sort a variable in descending order. See
#' [dplyr::arrange()] for more details.
#' @param inputs Quosure of values given by `...`.
#' @template step-return
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!!`)
#' to embed the value of the object in the expression (to
#' be portable between sessions). See the examples.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` which contains the sorting variable(s) or expression(s) is
#' returned. The expressions are text representations and are not
#' parsable.
#'
#' @template case-weights-not-supported
#'
#' @family row operation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <- recipe(~., data = iris) %>%
#' step_arrange(desc(Sepal.Length), 1 / Petal.Length)
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#' tidy(prepped, number = 1)
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' dplyr::arrange(desc(Sepal.Length), 1 / Petal.Length)
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' dplyr::arrange(desc(Sepal.Length), 1 / Petal.Length)
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' # When you have variables/expressions, you can create a
#' # list of symbols with `rlang::syms()`` and splice them in
#' # the call with `!!!`. See https://tidyeval.tidyverse.org
#'
#' sort_vars <- c("Sepal.Length", "Petal.Length")
#'
#' qq_rec <-
#' recipe(~., data = iris) %>%
#' # Embed the `values` object in the call using !!!
#' step_arrange(!!!syms(sort_vars)) %>%
#' prep(training = iris)
#'
#' tidy(qq_rec, number = 1)
step_arrange <- function(recipe, ...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("arrange")) {
inputs <- enquos(...)
add_step(
recipe,
step_arrange_new(
terms = terms,
trained = trained,
role = role,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_arrange_new <-
function(terms, role, trained, inputs, skip, id) {
step(
subclass = "arrange",
terms = terms,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_arrange <- function(x, training, info = NULL, ...) {
step_arrange_new(
terms = x$terms,
trained = TRUE,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_arrange <- function(object, new_data, ...) {
dplyr::arrange(new_data, !!!object$inputs)
}
print.step_arrange <-
function(x, width = max(20, options()$width - 35), ...) {
title <- "Row arrangement using "
print_step(x$inputs, x$inputs, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_arrange <- function(x, ...) {
cond_expr <- unname(x$inputs)
cond_expr <- map(cond_expr, quo_get_expr)
cond_expr <- map_chr(cond_expr, quo_text, width = options()$width, nlines = 1)
tibble(
terms = cond_expr,
id = rep(x$id, length(x$inputs))
)
}
|