1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#' Create Counts of Patterns using Regular Expressions
#'
#' `step_count` creates a *specification* of a recipe
#' step that will create a variable that counts instances of a
#' regular expression pattern in text.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param ... A single selector function to choose which variable
#' will be searched for the regex pattern. The selector should
#' resolve to a single variable. See [selections()] for more details.
#' @param pattern A character string containing a regular
#' expression (or character string for `fixed = TRUE`) to be
#' matched in the given character vector. Coerced by
#' `as.character` to a character string if possible.
#' @param normalize A logical; should the integer counts be
#' divided by the total number of characters in the string?.
#' @param options A list of options to [gregexpr()] that
#' should not include `x` or `pattern`.
#' @param result A single character value for the name of the new
#' variable. It should be a valid column name.
#' @param input A single character value for the name of the
#' variable being searched. This is `NULL` until computed by
#' [prep()].
#' @template step-return
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `result` (the
#' new column name) is returned.
#'
#' @template case-weights-not-supported
#'
#' @family dummy variable and encoding steps
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' data(covers, package = "modeldata")
#'
#' rec <- recipe(~description, covers) %>%
#' step_count(description, pattern = "(rock|stony)", result = "rocks") %>%
#' step_count(description, pattern = "famil", normalize = TRUE)
#'
#' rec2 <- prep(rec, training = covers)
#' rec2
#'
#' count_values <- bake(rec2, new_data = covers)
#' count_values
#'
#' tidy(rec, number = 1)
#' tidy(rec2, number = 1)
step_count <- function(recipe,
...,
role = "predictor",
trained = FALSE,
pattern = ".",
normalize = FALSE,
options = list(),
result = make.names(pattern),
input = NULL,
skip = FALSE,
id = rand_id("count")) {
if (!is.character(pattern)) {
rlang::abort("`pattern` should be a character string")
}
if (length(pattern) != 1) {
rlang::abort("`pattern` should be a single pattern")
}
valid_args <- names(formals(grepl))[-(1:2)]
if (any(!(names(options) %in% valid_args))) {
rlang::abort(paste0(
"Valid options are: ",
paste0(valid_args, collapse = ", ")
))
}
terms <- enquos(...)
if (length(terms) > 1) {
rlang::abort("For this step, only a single selector can be used.")
}
add_step(
recipe,
step_count_new(
terms = terms,
role = role,
trained = trained,
pattern = pattern,
normalize = normalize,
options = options,
result = result,
input = input,
skip = skip,
id = id
)
)
}
step_count_new <-
function(terms, role, trained, pattern, normalize, options, result, input, skip, id) {
step(
subclass = "count",
terms = terms,
role = role,
trained = trained,
pattern = pattern,
normalize = normalize,
options = options,
result = result,
input = input,
skip = skip,
id = id
)
}
#' @export
prep.step_count <- function(x, training, info = NULL, ...) {
col_name <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_name], types = c("string", "factor", "ordered"))
if (length(col_name) > 1) {
rlang::abort("The selector should select at most a single variable")
}
step_count_new(
terms = x$terms,
role = x$role,
trained = TRUE,
pattern = x$pattern,
normalize = x$normalize,
options = x$options,
input = col_name,
result = x$result,
skip = x$skip,
id = x$id
)
}
bake.step_count <- function(object, new_data, ...) {
check_new_data(names(object$input), object, new_data)
if (length(object$input) == 0L) {
# Empty selection, but still return the new column
new_data[, object$result] <- if (object$normalize) NA_real_ else NA_integer_
return(new_data)
}
## sub in options
regex <- expr(
gregexpr(
text = getElement(new_data, object$input),
pattern = object$pattern,
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE
)
)
if (length(object$options) > 0) {
regex <- rlang::call_modify(regex, !!!object$options)
}
new_data[, object$result] <- vapply(eval(regex), counter, integer(1))
if (object$normalize) {
totals <- nchar(as.character(getElement(new_data, object$input)))
new_data[, object$result] <- new_data[, object$result] / totals
}
new_data
}
counter <- function(x) length(x[x > 0])
print.step_count <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Regular expression counts using "
print_step(x$input, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_count <- function(x, ...) {
term_names <- sel2char(x$terms)
p <- length(term_names)
if (is_trained(x)) {
res <- tibble(
terms = term_names,
result = rep(x$result, p)
)
} else {
res <- tibble(
terms = term_names,
result = rep(na_chr, p)
)
}
res$id <- x$id
res
}
|