1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
#' Date Feature Generator
#'
#' `step_date` creates a *specification* of a recipe
#' step that will convert date data into one or more factor or
#' numeric variables.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param ... One or more selector functions to choose variables
#' for this step. The selected variables should have class `Date` or
#' `POSIXct`. See [selections()] for more details.
#' @param features A character string that includes at least one
#' of the following values: `month`, `dow` (day of week),
#' `doy` (day of year), `week`, `month`,
#' `decimal` (decimal date, e.g. 2002.197), `quarter`,
#' `semester`, `year`.
#' @param label A logical. Only available for features
#' `month` or `dow`. `TRUE` will display the day of
#' the week as an ordered factor of character strings, such as
#' "Sunday." `FALSE` will display the day of the week as a
#' number.
#' @param abbr A logical. Only available for features `month`
#' or `dow`. `FALSE` will display the day of the week as
#' an ordered factor of character strings, such as "Sunday".
#' `TRUE` will display an abbreviated version of the label,
#' such as "Sun". `abbr` is disregarded if `label =
#' FALSE`.
#' @param ordinal A logical: should factors be ordered? Only
#' available for features `month` or `dow`.
#' @param locale Locale to be used for `month` and `dow`, see [locales].
#' On Linux systems you can use `system("locale -a")` to list all the
#' installed locales. Can be a locales string, or a [clock::clock_labels()]
#' object. Defaults to `clock::clock_locale()$labels`.
#' @param columns A character string of variables that will be
#' used as inputs. This field is a placeholder and will be
#' populated once [prep()] is used.
#' @param keep_original_cols A logical to keep the original variables in the
#' output. Defaults to `TRUE`.
#' @template step-return
#' @family dummy variable and encoding steps
#' @export
#' @details Unlike some other steps, `step_date` does *not*
#' remove the original date variables by default. Set `keep_original_cols`
#' to `FALSE` to remove them.
#'
#' See [step_time()] if you want to calculate features that are smaller than
#' days.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected), `value` (the feature
#' names), and `ordinal` (a logical) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' library(lubridate)
#'
#' examples <- data.frame(
#' Dan = ymd("2002-03-04") + days(1:10),
#' Stefan = ymd("2006-01-13") + days(1:10)
#' )
#' date_rec <- recipe(~ Dan + Stefan, examples) %>%
#' step_date(all_predictors())
#'
#' tidy(date_rec, number = 1)
#'
#' date_rec <- prep(date_rec, training = examples)
#'
#' date_values <- bake(date_rec, new_data = examples)
#' date_values
#'
#' tidy(date_rec, number = 1)
step_date <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
features = c("dow", "month", "year"),
abbr = TRUE,
label = TRUE,
ordinal = FALSE,
locale = clock::clock_locale()$labels,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("date")) {
feat <-
c(
"year",
"doy",
"week",
"decimal",
"semester",
"quarter",
"dow",
"month"
)
if (!is_tune(features) & !is_varying(features)) {
if (!all(features %in% feat)) {
rlang::abort(paste0(
"Possible values of `features` should include: ",
paste0("'", feat, "'", collapse = ", ")
))
}
}
add_step(
recipe,
step_date_new(
terms = enquos(...),
role = role,
trained = trained,
features = features,
abbr = abbr,
label = label,
ordinal = ordinal,
locale = locale,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_date_new <-
function(terms, role, trained, features, abbr, label, ordinal, locale,
columns, keep_original_cols, skip, id) {
step(
subclass = "date",
terms = terms,
role = role,
trained = trained,
features = features,
abbr = abbr,
label = label,
ordinal = ordinal,
locale = locale,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_date <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("date", "datetime"))
step_date_new(
terms = x$terms,
role = x$role,
trained = TRUE,
features = x$features,
abbr = x$abbr,
label = x$label,
ordinal = x$ordinal,
locale = x$locale,
columns = col_names,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
ord2fac <- function(x, what) {
x <- getElement(x, what)
factor(as.character(x), levels = levels(x), ordered = FALSE)
}
get_date_features <-
function(dt,
feats,
locale,
abbr = TRUE,
label = TRUE,
ord = FALSE) {
## pre-allocate values
res <- matrix(NA_integer_, nrow = length(dt), ncol = length(feats))
colnames(res) <- feats
res <- as_tibble(res)
if ("year" %in% feats) {
res[, grepl("year$", names(res))] <- vec_cast(year(dt), integer())
}
if ("doy" %in% feats) {
res[, grepl("doy$", names(res))] <- vec_cast(yday(dt), integer())
}
if ("week" %in% feats) {
res[, grepl("week$", names(res))] <- vec_cast(week(dt), integer())
}
if ("decimal" %in% feats) {
res[, grepl("decimal$", names(res))] <- decimal_date(dt)
}
if ("quarter" %in% feats) {
res[, grepl("quarter$", names(res))] <- vec_cast(quarter(dt), integer())
}
if ("semester" %in% feats) {
res[, grepl("semester$", names(res))] <- vec_cast(semester(dt), integer())
}
if ("dow" %in% feats) {
if (inherits(locale, "clock_labels")) {
dow <- clock::date_weekday_factor(
x = dt, abbreviate = abbr, labels = locale
)
if (!label) {
dow <- as.integer(dow)
}
res[, grepl("dow$", names(res))] <- dow
} else {
res[, grepl("dow$", names(res))] <-
wday(dt, abbr = abbr, label = label, locale = locale)
}
if (!ord & label == TRUE) {
res[, grepl("dow$", names(res))] <-
ord2fac(res, grep("dow$", names(res), value = TRUE))
}
}
if ("month" %in% feats) {
if (inherits(locale, "clock_labels")) {
month <- clock::date_month_factor(
dt, abbreviate = abbr, labels = locale
)
if (!label) {
month <- as.integer(month)
}
res[, grepl("month$", names(res))] <- month
} else {
res[, grepl("month$", names(res))] <-
month(dt, abbr = abbr, label = label, locale = locale)
}
if (!ord & label == TRUE) {
res[, grepl("month$", names(res))] <-
ord2fac(res, grep("month$", names(res), value = TRUE))
}
}
res
}
#' @export
bake.step_date <- function(object, new_data, ...) {
check_new_data(names(object$columns), object, new_data)
new_cols <- rep(
length(object$features),
each = length(object$columns)
)
date_values <- matrix(NA, nrow = nrow(new_data), ncol = sum(new_cols))
# Dummy column names to avoid tibble warning
colnames(date_values) <- as.character(seq_len(sum(new_cols)))
date_values <- as_tibble(date_values)
new_names <- vector("character", length = ncol(date_values))
strt <- 1
for (i in seq_along(object$columns)) {
cols <- (strt):(strt + new_cols[i] - 1)
tmp <- get_date_features(
dt = getElement(new_data, object$columns[i]),
feats = object$features,
locale = object$locale %||% Sys.getlocale("LC_TIME"),
abbr = object$abbr,
label = object$label,
ord = object$ordinal
)
date_values[, cols] <- tmp
new_names[cols] <- paste(
object$columns[i],
names(tmp),
sep = "_"
)
strt <- max(cols) + 1
}
names(date_values) <- new_names
new_data <- bind_cols(new_data, date_values)
keep_original_cols <- get_keep_original_cols(object)
if (!keep_original_cols) {
new_data <- new_data[, !(colnames(new_data) %in% object$columns), drop = FALSE]
}
new_data
}
print.step_date <-
function(x, width = max(20, options()$width - 29), ...) {
title <- "Date features from "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_date <- function(x, ...) {
if (is_trained(x)) {
res <- tidyr::crossing(
terms = unname(x$columns),
value = x$features,
ordinal = x$ordinal
)
} else {
term_names <- sel2char(x$terms)
res <- tidyr::crossing(
terms = term_names,
value = x$features,
ordinal = x$ordinal
)
}
tibble::add_column(res, id = x$id)
}
|