File: depth.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (235 lines) | stat: -rw-r--r-- 6,703 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#' Data Depths
#'
#' `step_depth` creates a *specification* of a recipe
#'  step that will convert numeric data into measurement of
#'  *data depth*. This is done for each value of a categorical
#'  class variable.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param class A single character string that specifies a single
#'  categorical variable to be used as the class.
#' @param metric A character string specifying the depth metric.
#'  Possible values are "potential", "halfspace", "Mahalanobis",
#'  "simplicialVolume", "spatial", and "zonoid".
#' @param options A list of options to pass to the underlying
#'  depth functions. See [ddalpha::depth.halfspace()],
#'  [ddalpha::depth.Mahalanobis()],
#'  [ddalpha::depth.potential()],
#'  [ddalpha::depth.projection()],
#'  [ddalpha::depth.simplicial()],
#'  [ddalpha::depth.simplicialVolume()],
#'  [ddalpha::depth.spatial()],
#'  [ddalpha::depth.zonoid()].
#' @param data The training data are stored here once after
#'  [prep()] is executed.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details Data depth metrics attempt to measure how close data a
#'  data point is to the center of its distribution. There are a
#'  number of methods for calculating depth but a simple example is
#'  the inverse of the distance of a data point to the centroid of
#'  the distribution. Generally, small values indicate that a data
#'  point not close to the centroid. `step_depth` can compute a
#'  class-specific depth for a new data point based on the proximity
#'  of the new value to the training set distribution.
#'
#' This step requires the \pkg{ddalpha} package. If not installed, the
#'  step will stop with a note about installing the package.
#'
#' Note that the entire training set is saved to compute future
#'  depth values. The saved data have been trained (i.e. prepared)
#'  and baked (i.e. processed) up to the point before the location
#'  that `step_depth` occupies in the recipe. Also, the data
#'  requirements for the different step methods may vary. For
#'  example, using `metric = "Mahalanobis"` requires that each
#'  class should have at least as many rows as variables listed in
#'  the `terms` argument.
#'
#'  The function will create a new column for every unique value of
#'  the `class` variable. The resulting variables will not
#'  replace the original values and by default have the prefix `depth_`. The
#'  naming format can be changed using the `prefix` argument.
#'
#'  # Tidying
#'
#'  When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#'  `terms` (the selectors or variables selected) and `class` is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("ddalpha")
#'
#' # halfspace depth is the default
#' rec <- recipe(Species ~ ., data = iris) %>%
#'   step_depth(all_numeric_predictors(), class = "Species")
#'
#' # use zonoid metric instead
#' # also, define naming convention for new columns
#' rec <- recipe(Species ~ ., data = iris) %>%
#'   step_depth(all_numeric_predictors(),
#'     class = "Species",
#'     metric = "zonoid", prefix = "zonoid_"
#'   )
#'
#' rec_dists <- prep(rec, training = iris)
#'
#' dists_to_species <- bake(rec_dists, new_data = iris)
#' dists_to_species
#'
#' tidy(rec, number = 1)
#' tidy(rec_dists, number = 1)
step_depth <-
  function(recipe,
           ...,
           class,
           role = "predictor",
           trained = FALSE,
           metric = "halfspace",
           options = list(),
           data = NULL,
           prefix = "depth_",
           skip = FALSE,
           id = rand_id("depth")) {
    if (!is.character(class) || length(class) != 1) {
      rlang::abort("`class` should be a single character value.")
    }

    recipes_pkg_check(required_pkgs.step_depth())

    add_step(
      recipe,
      step_depth_new(
        terms = enquos(...),
        class = class,
        role = role,
        trained = trained,
        metric = metric,
        options = options,
        data = data,
        prefix = prefix,
        skip = skip,
        id = id
      )
    )
  }

step_depth_new <-
  function(terms, class, role, trained, metric,
           options, data, prefix, skip, id) {
    step(
      subclass = "depth",
      terms = terms,
      class = class,
      role = role,
      trained = trained,
      metric = metric,
      options = options,
      data = data,
      prefix = prefix,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_depth <- function(x, training, info = NULL, ...) {
  x_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, x_names], types = c("double", "integer"))

  class_var <- x$class[1]

  x_dat <-
    split(training[, x_names], getElement(training, class_var))
  x_dat <- lapply(x_dat, as.matrix)
  step_depth_new(
    terms = x$terms,
    class = x$class,
    role = x$role,
    trained = TRUE,
    metric = x$metric,
    options = x$options,
    data = x_dat,
    prefix = x$prefix,
    skip = x$skip,
    id = x$id
  )
}

get_depth <- function(tr_dat, new_dat, metric, opts) {
  if (ncol(new_dat) == 0L) {
    # ddalpha can't handle 0 col inputs
    return(rep(NA_real_, nrow(new_dat)))
  }

  if (!is.matrix(new_dat)) {
    new_dat <- as.matrix(new_dat)
  }
  opts$data <- tr_dat
  opts$x <- new_dat
  dd_call <- call2(paste0("depth.", metric), !!!opts, .ns = "ddalpha")
  eval(dd_call)
}

#' @export
bake.step_depth <- function(object, new_data, ...) {
  x_names <- colnames(object$data[[1]])
  check_new_data(x_names, object, new_data)

  x_data <- as.matrix(new_data[, x_names])
  res <- lapply(
    object$data,
    get_depth,
    new_dat = x_data,
    metric = object$metric,
    opts = object$options
  )
  res <- as_tibble(res)
  newname <- paste0(object$prefix, colnames(res))
  res <- check_name(res, new_data, object, newname)
  res <- bind_cols(new_data, res)
  res
}

print.step_depth <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- glue::glue("Data depth by {x$class} for ")

    if (x$trained) {
      x_names <- colnames(x$data[[1]])
    } else {
      x_names <- character()
    }

    print_step(x_names, x$terms, x$trained, title, width)
    invisible(x)
  }



#' @rdname tidy.recipe
#' @export
tidy.step_depth <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(
      terms = colnames(x$data[[1]]) %||% character(),
      class = x$class
    )
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(
      terms = term_names,
      class = na_chr
    )
  }
  res$id <- x$id
  res
}


#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_depth <- function(x, ...) {
  c("ddalpha")
}