1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#' Data Depths
#'
#' `step_depth` creates a *specification* of a recipe
#' step that will convert numeric data into measurement of
#' *data depth*. This is done for each value of a categorical
#' class variable.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param class A single character string that specifies a single
#' categorical variable to be used as the class.
#' @param metric A character string specifying the depth metric.
#' Possible values are "potential", "halfspace", "Mahalanobis",
#' "simplicialVolume", "spatial", and "zonoid".
#' @param options A list of options to pass to the underlying
#' depth functions. See [ddalpha::depth.halfspace()],
#' [ddalpha::depth.Mahalanobis()],
#' [ddalpha::depth.potential()],
#' [ddalpha::depth.projection()],
#' [ddalpha::depth.simplicial()],
#' [ddalpha::depth.simplicialVolume()],
#' [ddalpha::depth.spatial()],
#' [ddalpha::depth.zonoid()].
#' @param data The training data are stored here once after
#' [prep()] is executed.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details Data depth metrics attempt to measure how close data a
#' data point is to the center of its distribution. There are a
#' number of methods for calculating depth but a simple example is
#' the inverse of the distance of a data point to the centroid of
#' the distribution. Generally, small values indicate that a data
#' point not close to the centroid. `step_depth` can compute a
#' class-specific depth for a new data point based on the proximity
#' of the new value to the training set distribution.
#'
#' This step requires the \pkg{ddalpha} package. If not installed, the
#' step will stop with a note about installing the package.
#'
#' Note that the entire training set is saved to compute future
#' depth values. The saved data have been trained (i.e. prepared)
#' and baked (i.e. processed) up to the point before the location
#' that `step_depth` occupies in the recipe. Also, the data
#' requirements for the different step methods may vary. For
#' example, using `metric = "Mahalanobis"` requires that each
#' class should have at least as many rows as variables listed in
#' the `terms` argument.
#'
#' The function will create a new column for every unique value of
#' the `class` variable. The resulting variables will not
#' replace the original values and by default have the prefix `depth_`. The
#' naming format can be changed using the `prefix` argument.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `class` is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("ddalpha")
#'
#' # halfspace depth is the default
#' rec <- recipe(Species ~ ., data = iris) %>%
#' step_depth(all_numeric_predictors(), class = "Species")
#'
#' # use zonoid metric instead
#' # also, define naming convention for new columns
#' rec <- recipe(Species ~ ., data = iris) %>%
#' step_depth(all_numeric_predictors(),
#' class = "Species",
#' metric = "zonoid", prefix = "zonoid_"
#' )
#'
#' rec_dists <- prep(rec, training = iris)
#'
#' dists_to_species <- bake(rec_dists, new_data = iris)
#' dists_to_species
#'
#' tidy(rec, number = 1)
#' tidy(rec_dists, number = 1)
step_depth <-
function(recipe,
...,
class,
role = "predictor",
trained = FALSE,
metric = "halfspace",
options = list(),
data = NULL,
prefix = "depth_",
skip = FALSE,
id = rand_id("depth")) {
if (!is.character(class) || length(class) != 1) {
rlang::abort("`class` should be a single character value.")
}
recipes_pkg_check(required_pkgs.step_depth())
add_step(
recipe,
step_depth_new(
terms = enquos(...),
class = class,
role = role,
trained = trained,
metric = metric,
options = options,
data = data,
prefix = prefix,
skip = skip,
id = id
)
)
}
step_depth_new <-
function(terms, class, role, trained, metric,
options, data, prefix, skip, id) {
step(
subclass = "depth",
terms = terms,
class = class,
role = role,
trained = trained,
metric = metric,
options = options,
data = data,
prefix = prefix,
skip = skip,
id = id
)
}
#' @export
prep.step_depth <- function(x, training, info = NULL, ...) {
x_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, x_names], types = c("double", "integer"))
class_var <- x$class[1]
x_dat <-
split(training[, x_names], getElement(training, class_var))
x_dat <- lapply(x_dat, as.matrix)
step_depth_new(
terms = x$terms,
class = x$class,
role = x$role,
trained = TRUE,
metric = x$metric,
options = x$options,
data = x_dat,
prefix = x$prefix,
skip = x$skip,
id = x$id
)
}
get_depth <- function(tr_dat, new_dat, metric, opts) {
if (ncol(new_dat) == 0L) {
# ddalpha can't handle 0 col inputs
return(rep(NA_real_, nrow(new_dat)))
}
if (!is.matrix(new_dat)) {
new_dat <- as.matrix(new_dat)
}
opts$data <- tr_dat
opts$x <- new_dat
dd_call <- call2(paste0("depth.", metric), !!!opts, .ns = "ddalpha")
eval(dd_call)
}
#' @export
bake.step_depth <- function(object, new_data, ...) {
x_names <- colnames(object$data[[1]])
check_new_data(x_names, object, new_data)
x_data <- as.matrix(new_data[, x_names])
res <- lapply(
object$data,
get_depth,
new_dat = x_data,
metric = object$metric,
opts = object$options
)
res <- as_tibble(res)
newname <- paste0(object$prefix, colnames(res))
res <- check_name(res, new_data, object, newname)
res <- bind_cols(new_data, res)
res
}
print.step_depth <-
function(x, width = max(20, options()$width - 30), ...) {
title <- glue::glue("Data depth by {x$class} for ")
if (x$trained) {
x_names <- colnames(x$data[[1]])
} else {
x_names <- character()
}
print_step(x_names, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_depth <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = colnames(x$data[[1]]) %||% character(),
class = x$class
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
class = na_chr
)
}
res$id <- x$id
res
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_depth <- function(x, ...) {
c("ddalpha")
}
|